
SINDA

USER'S

MANUAL

by: JAMES 2. SMITH

J._

(NASA-CR- 13q 271) SYSTEMS IMPHOVED

NUMERICAL DIFFERENCING ANALYZE_ (SINDA): ...... :_
_SEB'S MANUAL (TRW Systems Group)_'

'i

00/99

N74-75225

Unclas

40066

•;YSTEM3 GROUP

REPRODUCEO BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. OEPARfMENr OF COM_ERC(

SPRINGFI£LO, VA. 22161

/



NOTICE

THIS DOCUMENT

FRO_[ THE BEST

THE SPONSORING

IS RECOGNIZED

ARE ILLEGIBLE,

IN THE INTEREST

AS MUCH

HAS BEEN REPRODUCED

COPY FURNISHED US BY

AGENCY. ALTHOUGH IT

THAT CERTAIN

IT IS BEING

OF _AKING

INFOR.%IATION

PORTIONS

RELEASED

AVAILABLE

AS POSSIBLE.



Prepared for:
National Aeronautics and Space Administration
MannedSpacecraft Center
Under Contract NAS9-10435

Prepared by:

Concurrence:

Rob_eft R. MCMurchy, Manager

Thermodynamics Section
(/

Concurrence:

Robert G. Payne, ,Manager /

Applied Mechanics Department

Concurrence:

Robert L. Dotts

NASA Technical Monitor

NASA Manned Spacecraft Center

..,',

%k

\

\

pages i, and ii are blank

iii.

Preceding_pageblank



_._:SiRACT

A comprehensive User's Manual for the Systems Improved Numerical Differencing

#malyzer (SINDA) program is presented in two parts: Part A - User's

Instruction Manual, and Part B - User's Reference Manual. The Instruction

Manual, written in the style and format of a textbook, contains a complete

description of the input options and operational features of SINDA, as well

as a full explanation of the "why" and "how" involved in using these capa-

bilities. The Reference Manual, written in the style and format of a hand-

book, contains a concise compendium of the input options and subroutines

avail able to the program.

V

Precedingpageblank
t ...............



FOREWORD

The Systems Improved Numerical Differencing Analyzer (SINDA) program is an

expanded and refined version of the Chrysler Improved Numerical Differencing

Analyzer for Third Generation computers (CINDA-3G) z. This User's Manual

represents a concerted effort to fully document all of the capabilities of

SlNDA and will, hopefully, serve the following purposes:

I. Inform the experienced user of CINDA-3G of the new capabilities
available in SINDA.

2. Instruct the new user in all phases of the application of SlNDA.

3. Explain much of the "mystery" which tends to surround any system
of this size, with the intent of creating confidence in, and a
better understanding of the program.

4. Serve as a convenient reference book capable of presenting all of
the features of SINDA in a concise, easy-to-find manner.

Since no single approach for satisfying all four of these purposes could be

defined, a two-part manual was conceived. Part A, the User's Instruction

Manual, is intended to serve those who are interested in learnin._ SINDA.

Part B, the User's Reference Manual, is intended to serve those who are

actively engaged in using SINDA.

SlNDA is intended primarily for analyzing thermal systems represented in

electrical analog, lumped parameter form, although its use may be extended

to include other classes of physical systems which can be modeled in this

form. Potential SINDA users who are unfamiliar with the technique of

modeling thermal systems should consult standard texts on the subject2,3, 4

prior to undertaking a study of the Instruction Manual.

Since SlNDA was designed to be upwards-compatible with CINDA-3G, experienced

users of ClNDA-3G will discover many of the new features of SlNDA through

daily use of the Reference Manual. However, such users will find that the

Instruction Manual will provide a more orderly exposure to each new feature

of SlNDA as well as a distinct shortcut to an in-depth understanding of

the program.

\

vii

-Precedingpageblank
[...... • _.



Users who have mastered the operational features of SINDA will find a de-

tailed discussion of the theoretical foundations and the proc__ssing functions

of the program in the SINDA Engineering Program Manual s, which has been

published in conjunction with this Manual.

This SINDA User's Manual was generated under NASA Contract NAS 9-I0435

entitled "Advanced SINDA Thermal Analyzer Development." The monitoring for

this program was provided by Mr. Robert L. Dotts of the Thermal Technology

Branch of the Structures and Mechanics Division at the NASA Manned Spacecraft

Center. His helpful suggestions and thoughtful guidance during the prepara-

tion of this manual am acknowledged with grateful appreciation. Another

individual well deserving acknowledgement is Mr. R. R. McMurchy, whose

dedicated efforts were instrumental in spearheading and guiding the activities

which led to the development of this manual. The author also wishes to thank

Mr. L. C. Fink for his lucid explanation of the SINDA control constants s,

and Messrs. T, Ishimoto and J. D. Gaski for their detailed discussions of

the Thermal Network Error Correction Package and the Sensitivity Temperature

Error Program I, which were adapted for inclusion in this manual. In addition,

the author wishes to thank Mr. Fink, who performed the programming effort on

this contract, for his assistance in verifying the technical accuracy of the

explanations of the new SINDA features described herein. Acknowledgement is

also due to all the previous authors of SINDA documentation for their con-

tributions to the descriptions of the many subroutines in the SINDA library.

J. P. S.

\_

viii



f

C

l •

_t,B[._' OF CONTENTS

.

•

PART A: USER'S INSTRUCTION MANUAL

Introduction

l.l What is SINDA?

1.2 Sample R-C Network Input

1.3 System Structure

Preliminary Information

2.1 Basic Concepts

2.2 Typographical Conventions

2.2.1 Punched Cards

2.2.2 Type Styles

2.3 File and Tape Conventions

2.4 Terms and Data Conventions

2.4.1 Common Terms and Data Types

2.4.2 Computer Data Representation

SINDA Input Deck

3.1 Introduction to the Input Deck

3.1.1 Basic Concepts

3.1.2 Basic Structure

Title Block

Data Blocks

3.3.1 Basic Concepts

3.3.2 Constants Data Block

3.3.2.1

3.3.2.2

3.3.2.3

3.3.2.4

Basic Concepts

Control Constants

User Constants

Input Options

3.3.3 Array Data Block

3.3.3.1 •Basic Input

3.3.3.2 Basic Concepts

3.3.3.3 Array Structures

3.3.4 Node Data Block

3.3.4.1

3.3.4.2

3.3.4.3

Basic Concepts

Constant Capacitance Options

Automated Variable Capacitance Options

_ l _ O_

l-I

I-2

I-6

2-I

2-I

2-I

2-2

2.4

2-5

2-5

2-6

3-I

3-I

3-4

3-6

3-8

3-8

3-11

3-11

3-14

3-16

3-17

3-20

3-20

3-22

3-25

3-29

3-29

3-34

3-27

ix



.

3.3.5

3.3.6

3.4

3.4.l

3.4.2

3.4.3

Source Data Block

3.3.5.1 Basic Concepts

3.3.5.2 Constant Sourca Options

3.3.5.3 Automated Variable Source Options

Conductor Data Block

3.3.6.1 Basic Concepts

3.3.6.2 Constant Conductance Options

3.3.6.3 Automated Variable Conductance Options

Operations Blocks

Introduction

Functional Description

Application Guidelines

Execution Block

Variables l Block

Variables 2 Block

Output Call s Block

3.4.3.1

3.4.3.2

3.4.3.3

3.4.3.4

3.4.4 Operational Details

3.4.4.1 Introduction

3.4.4.2 SINDA Statements

3.4.4.3 F-Type FORTRAN Statements

3.4,4.4 M-Type FORTRAN Statements

Other Topics

4.1 Introduction

4.2 Dynamic Storage

4.3 FORTRAN Control Statements

4.4 Multiple Run Capabilities

4.4.1 Edit Options

4.4.2 Store/Recall Option

4.4.3 Parameter Runs

4.5 Introduction to the SINDA Library

Basic Conventions

Execution Subroutines

Arithmetic Subroutines

Interpolation Subroutines

Mathematical Solution Routines

Matrix Subroutines

Output Subroutines

Application Subroutines

X

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

4.5.6

4.5.7

4.5.8

Paee

3-45

3-45

3-47

3-48

3-54

3-54

3-58

3-62

3-73

3-73

3-75

3-82

3-82

3-85

3-87

3-89

3-90

3-90

3-91

3-98

3-101

4-I

4-I

4-I

4-4

4-5

4-6

4-14

4-16

4-19

4-19

4-24

4-25

4-26

4-26

4-27

4-27

4-27

_..J



4.6

4.7

4.8

4.9

4.10

Advanced Control Constant Usage

Load and Go Routines

Variable Format Capability

Thermal Network Error Correction Package

Auxiliary Data Deck

Pao__e_

4-28

4-40

4-41

4-42

4-42

e

e

PART B: USER'S REFERENCE MANUAL

Summary of SINDA Options and Features

5.1 Basic Input Deck

5.1.1 Input Control Card

5.1.2 Title Block

5.1.3 Data Blocks

5.1.3.1

5.1.3.2

5.1.3.3

5.1.3.4

5.1.3.5

5.1.3.6

Basic Conventions

NodeData

Source Data

Conductor Data

Constants Data

Array Data

5.1.4 Operations Blocks

5.1.4.1 Block Structure

5.1.4.2 SINDA Statements

5.1.4.3 F-Type FORTRAN Statements

5.1.4.4 M-Type FORTRAN Statements

5.2 Dynamic Storage

5.3 Multiple Run Capabilities

5.3.1 Edit Options

5.3.2 Store/Recall Option

5.3.3 Parameter Runs

5.4 Variable Format Capability

SINDA Subroutine Library

6.1 Reference Information

6.1.1 Conventions

6.1.1.1 Data Types

6.1.I.2 Reference Forms

6.1.2 Alphabetical Listing

xi

5-I

5-2

5-2

5-3

5-3

5-5

5-8

5-II

5-!4

5-19

5-20

5-20

5-20

5-21

5-21

5-22

5-23

5-23

5-23

5-24

5-25

6.1-I

6.l-I

6.l-I

6.1 -l

6.1-2



6.2 Execution Subroutines

6.3 Arithmetic Subroutines

6.4 Interpolation Subroutines

6.5 Mathematical Solution Subroutines

6.6 Matrix Subroutines

6.7 Output Subroutines

6.8 Application Subroutines

P2Qe

6.2-I

6.3-I

6.4-I

6.5-I

6.6-I

6.7-I

6.8-I

APPENDICES

A. Sample Problem

B. Thermal Network Correction Package

C. STEP (Sensitivity Temperature Error Program)

D. NASA/MSC System-Dependent Run Deck Information

References

Index

A-I

B-l

C-I

D-l

R-l

I-l

xii
f



/--.)

t" ""

; I",.'_OF FIGURES "

I-I: BAR OF METAL FOR SAMPLE PROBLEM

I-2: SAMPLE THERMAL NETWORK

I.-3:. CCMPLETE SINDA INPUT DECK FOR SAMPLE PROBLEM

]-4:

I-5:

I-6:

2-I:

2-2:

2-3:

2-4:

3-I:

3-2:

3-3:

3-4:

3-5:

3-6:

3-7:

3-8:

3-9:

3-I0:

3-11:

3-12:

BASIC FLOW IN USING AN APPLICATIONS PROGRAM

BASIC FLOW IN USING THE SINDA SYSTEM

DETAILED INTERNAL FLOW OF THE SINDA SYSTEM

STANDARD 80-COLUMN PUNCHED CARD

SAMPLE CARD COLUMN DESIGNATIONS

BINARY REPRESENTATION OF DATA (EXAMPLE l)

BINARY REPRESENTATION OF DATA (EXAMPLE 2)

BASIC SINDA INPUT DECK

SAMPLE TABLE OF ARRAY DATA

SAMPLE BIVARIATE FUNCTION

INEFFICIENT NODE TABLE STRUCTURE BEFORE SORTING AND PACKING

BY PREPROCESSOR

STRUCTURE OF NODE TABLES AFTER PREPROCESSING

SUMMARY OF NODE DATA INPUT OPTIONS

NODE DATA TABLES PRODUCED FROM SAMPLE NODE DATA INPUT CARDS

CURVE OF TEMPERATURE VARYING CAPACITANCE

SUMMARY OF SOURCE DATA INPUT OPTIONS

TEMPERATURE VARYING HEAT RATE

SUMMARY OF CONDUCTOR DATA INPUT OPTIONS

THERMAL NETWORK

Paa_..._e

I-2

I-3

I-5

I-6

I-7

I-7

2-I

2-2

2-6

?-7

3-5

3-24,

3-27

3-31

3-31

3-33

3-35

3-40

3-47

3-50

3-57

3-65

3-13:

3-14:

3-15:

3-16:

3-17:

4-1:

4-2:

4-3:

4-4:

4-5:

4-6:

4-7:
i

STRAIGHT LINE APPROXIMATION OF TEMPERATURE VS CONDUCTANCE CURVE 3-66

BASIC PROGRAM FLOW

SAMPLE FLOW CHART FOR THE EXECUTION BLOCK

NESTED STRUCTURE OF THE OPERATIONS'BLOCKS

FLOW CHART OF NETWORK SOLUTION SUBROUTINE CNFRWD

SUMMARY OF EDIT OPTIONS

SAMPLE INPUT CARDS AND PRINTOUT FOR EDIT OPTION l

SAMPLE INPUT CARDS AND PRINTOUT FOR EDIT OPTION 2

SAMPLE INPUT CARDS AND PRINTOUT FOR EDIT OPTION 3

SAMPLE INPUT CARDS AND PRINTOUT FOR EDIT OPTION 4

ORIGINAL PROBLEM FOLLOWED BY PARAMETER RUNS

RECALLED PROBLEM USED AS BASELINE FOR PARAMETER RUNS

3-76

3-77

3-79

3-81

4-9

4-10

4-11

4-12

4-13

4-20

4-21

xiii



4-8-"

4-9:

4-10:

4-11:

BASIC FLOW IN EXPLICIT ROUTINES DURING BCH TIME STEP

BASIC FLOW IN IMPLICIT ROUTINES DURING EACH TIME STEP

BASIC FLOW IN STEADY STATE ROUTINES

USER-SPECIFIED CONTROL CONSTANTS REQUIRED
BY NETWORK SOLUTION ROUTINES

4-30

4-31

4-32

4-33

• XIv



f'_) I. INTRODUCTION

l.l WHAT IS SINDA?

SINDA, the Systems Improved Numerical Differencing Analyzer, is a

software system which possesses capabilities which make it well suited for

solving lumped parameter representations of physical problems governed by

diffusion-type equations. The system was originally designed as a general

thermal analyzer accepting resistor-capacitor (R-C) network representations

of thermal systems; although, with due attention to units and thermally

oriented peculiarities*, SINDA will accept R-C networks representing other

types of systems.

The SINDA system consists of two main pieces: (1) the preprocessor,

and (2) the library. The SINDA preprocessor is a program which accepts

problems written in the SINDA language and converts them to the FORTRAN

language. The S!NDA library consists of many pre-written FORTRAN sub-

routines which perform a large variety of commonly needed actions and

which reduce the programming effort which might have been required to solve

a given problem. These routines are fully compatible with the FORTRAN

routines produced by the preprocessor from the user's input.

One of the most outstanding features of SINDA is that, in addition

toaccepting network description cards and other relevant values as input

data, it also accepts "program-like" logic statements and subroutine calls

(requesting some specific operation from the library) as data, which,

ultimately, permit the user to tailor the program to suit his particular

problem.

Within this manual, the SINDA system will always be considered as a

Thermal Analyzer. However, the user should not overlook its elementary

applicability to any type of lumped parameter network governed by diffusion

equations (e.g., electrical networks). While networks are the real

forte of SINDA, any general mathematical problem may be conveniently solved

*For example, heat flow by radiation is unique to thermal systems in that it

is a function of temperature to the fourth power. By contrast, no general

flow phenomenon in fluid systems is a function of pressure to the fourth

power.

l-I



/
k:ith +.he system by taking advantage of the wide variety of subroutines

{v_ilable in the SINDA library.

1.2 SAMPLE R-C NETWORK INPUT

. To introduce the user to the nature of the R-C new'work input re-

quired by SINDA, as well as to illustrate the basic flexibility of the

program, a short sample problem, from engineering statement to completed

input deck, will be presented in the following paragraphs. To avoid ob-

scuring the issue, various mechanical details such as card formats and

control card sequences will be ignored until the basic input is completely

introduced.

Consider a bar of metal as shown in Figure l-l. It is 0.I inch

thick, l.O inch wide, and 3.0 inches long, and is fully insulated along

its length and at one end. A heater is imbedded at the insulated end of

the bar, and the uninsulated end radiates to deep space. The heater out-

put, in BTU/minute, is equal to the time, in minutes, that it has been in

operation. The bar is initially at a temperature of 70.O:_F, and after

turning on the heat, it is desired to know the time, to the nearest minute,

when the center of the bar reaches a temperature of 200.O°F, and the

temperature distribution in the bar at this time.

}-

/

/

HEATER /
i

/

/

"////////////////

DENSITY- 3.0 LBIIN3

SPECIFIC HEAT - 2.0 BTU/LB-eF
CONgUCTIVITY - 0.5 BTU/FT-MIN-'F

EMISSIVITY = 0.1

I/I/I////////////

DEEP
SPACE

FIGIIRE l-l: BAR OF METAL FOR SAMPLE PROBLEM

L ..,

1-2



r

r--

(

Figure I-2 shows the lumped parameter, R-C network which represents

the stated problem. The mass of the bar has been divided into three* iumps

(shown schematically as capacitors) which are called NODES, and each node

has been assigned an arbitrary reference number. The heat conduction paths,

(shdwn schematically as resistors) which are called CONDUCTORS, have been

identified and have also been assigned arbitrary reference numbers. A heat

SOURCE, Q, which represents the heater in the insulated end of the bar, is

shown entering node'lO, Deep space is represented by a censtant tempera-

ture node at -460°F (shown schematically as a ground).

r--- V--'l---q
J #101S #1$;_0 #209g

m

T T T -#gg
#10 #1S #_

-_0.0 "F

FIGURE I-2: SAMPLE THERMAL NETWORK

The thermal capacity (or CAPACITANCE) of each bar node is equal to the pro-

duct of its density, volume, and specific heat (in this case, 0.6 Btu/°F).

The three bar nodes may be defined, in the SINDA language, by specifying

their reference number, initial temperature, and capacitance as follows:

I0, 70.0, 0.6

15, 70.0, 0.6

20, 70.0, 0.6

ecz,dl

eaz,d g

ecz,d3

(See also, Figure I-3)

The node representing deep space may be defined, in SINDA, as follows:

-g9, -460.0, 0.0 ea_ 4

The CONDUCTANCE of a conductor which represents a heat flow path

through a material is equal to the product of thematerial's thermal con-

ductivity and the cross-sectional area of the flow path, divided by the

L *An odd number of lumps was chosen so that one lump would represent the

mass at the center of the bar, which is of particular interest in this

problem. Three 7umps, rather than five or seven, etc., were selected on

the basis of engineering judgement.

1-3



length of the path. The conductance of bar conductors lOIS and IS20 is,

therefore., 0.05 Btu/min-°F. The conductance of a conductor which represents

heat flow by radiation is equal te the product of the Stephen-Bo!tzman con-

stant and the emissivity, area, and view factor from the surface. In this

case, conductor 2099 has a conductance of 1.98 x lO"Is. In SINDA, the

three conductors may be defined by specifying their reference number, the

reference numbers of their adjoining nodes, and their conductance as follows:

1015, lO, 15, 0.05

1520, 15, 20, 0.05

-2099, 20, 99_ 1.98E-15

aaz, d

e,,,-,d 6

oaz,d ?

Since the bar will undoubtedly reach the temperature of interest

in less than lO00 minutes and the output results need be accurate only to

the nearest minute, the SINDA end time and output time control variables

may be set, appropriately, as follows:

TIMEND = lO00.O, OUTPUT = l.O eczz,d 8

Since a transient analysis of the bar is desired, a pre-written

routine from the SiNDA library which performs transient analysis by the

explicit forward finite differencing technique may be called into action,

in SINDA, with the following card:

CNFRWD e.m_9

To impress the heat source on node lO, the following SINDA card

is prepared:

M QIO = TIMEM oaz,d10

•nd finally, to suppress output until the center of the bar

reaches 200°F, at which time it is desirable to print the temperatures of

the nodes and to end the problem, the following logic and statements are

required:

M

F

M

IF (Tl5 .LT. 200.0) GO TO 50

PRNTMP $ PRINT TEMPERATURES

TIMEND = TIMEM $ END PROBLEM NOW

50 CONTINUE

ea_d 11

eaz_ lg

ea_d 13

¢_d 14

l-4



The foregoing examp,le has illustrated the complete proces_ of

transforming an engineering problem into a SINDA input deck. Only the most

elementary SINDA features were employed so that the new user would not be

overwhelmed with detail. At the same time, however, a small amount of

program logic was included to expose the new user to the versatility and

flexibility that are possible within the SINDA system.

1.3 SYSTEM STRUCTURE

In the usual engineering environment, a programmer is commissioned

to prepare an applications program which is subsequently made available to

the engineer on a production basis. The engineer supplies input data and

receives output data, as shown in Figure I-4.

Z _'_"

FIGURE 1-4: BASIC FLOW IN USING AN APPLICATIONS PROGRAM

Changes to the logic and equations are difficult for the program

user to implement conveniently since they must be written in a computer

oriented language and must be submitted through a formal programming organi-

zation. When SINDA is used, however, the engineer need only call on the

programmer to supply a standard deck of computer oriented "control cards"

which will call the various elements of the system into action in the

proper sequence. The engineer then formulates his problem in the engineer-

ing oriented SINDA language, assembling both data and solution technique

(i.e., logic and equations) into this card deck, which then serves as the

complete input to the SINDA system. Programmer support has been minimized

since the bulk of the programming effort is already built into the SINDA

preprocessor and library. The engineering user need only specify the

data and the order and type of "program building blocks" which he deems

necessary for the solution of his problem, as illustrated in Figure I-5.

©

J

I-6



Figure I-3 shows how the 14 cards prepared specifically for the

sample problem have been inserted in a SINDA "setup deck," which contains

the additional cards necessary to separate, for example, the node data

from the conductor data, etc. The list of cards in Figure I-3 constitutes

the complete SINDA input deck required to solve the stated problem.

F
-F
F

$ CARD l
$ CARD 2
$ CARD 3
$ CARD 4

$ CARD S
$ CARD 6
$ CARD 7

BCD 3THERMAL SPCS
END
BCD 3NODE DATA

I0,70.0,0.6
15,70.0,0.6
20,70.0,0.6
-g9,-460.0,0.0

END
BCD 3CONDUCTOR DATA

lOI5,10,1S,O.OS
1520,15,20,0.05
-2099,20,99 ,l.g8E-I5

END
BCD 3CONSTANTS DATA

TIMEND=1000.0,0UTPUT=I .0
END
BCD 3ARRAY DATA
END
BCD 3EXECUTION

DIMENSION X(5000)
NDIM--5000
NTH-O
CNFRWD

END
BCD 3VARIABLES l

QIO-TIMEM
END
BCD 3VARIABLES 2
END
BCD 3OUTPUT CALLS

IF (TIS .LT. 200.0) GO TO 50
PRNTMP
TIMEND=TIMEM
CONTINUE

$ CARD 8

$ CARD9

M $ CARD lO

M $ CARD 11
$ CARD 12

F $ CARD 13
M SO $ CARD 14

END
BCD 3END OF DATA

FIGURE I-3: COMPLETE SINDA INPUT DECK FOR SAMPLE PROBLEM

I-5



#

S'
f

. _ OATA IN

i
kll

-" LOGIC &
[QUATIONS

FIGURE I-5: BASIC FLOW IN USING THE SINDA SYSTEM

It should then be evident that the SINDA system is much more than

an applications program. It has, in fact, all of the functions and capabili-

ties of a special purpose operating system. Since most computers in current

use in engineering environments already have operating systems built around

a FORTRAN compiler, the SINDA system is designed to augment the existing

FORTRAN system. Hence, the SINDA library serves as an extension to the

existing FORTRAN library, and the SINDA program serves as a preprocessor

to (i.e., it preceeds) the existing FORTRAN compiler. This augmentation

arrangement is illustrated in Figure I-6.

LOGIC I

MTA [N

COMPltE$S[O
PR(PnOCESSOR rtATA

SYSTEM
FORTRAN
¢ONIILER

COO(

SYSTI[N
LIIMRY

SINOA
LIIRARY

OATA OUT

FIGURE I-6: DETAILED INTERNAL FLOW OF THE SINDA SYSTEM

I-7
l



When using the full capability of SINDA, the engineer will be

required to exert a programming effort of sorts, to a major extent in the

engineering-oriented SINDA language, and to a limited extent in the FORTRAN

language. This, together with the wide variety of options and features

offered by the system, suggests an appropriate word of caution: SINDA is

a comprehensive system which cannot be mastered overnight. The prospective

user should not assume that a cursory review of the Instruction Manual will

lead to immediate success, nor should he assume that this manual represents

a "cookbook" which will eventually yield to a plodding and rigid adherence

to each and every rule. In presenting instructions on the use of a com-

puter program, it is not possible to completely avoid some "cookbook-like"

sections; however, every effort has been made to explain the "why" and

"how" behind each rule, option, and feature, with the intent of encouraging

the reader to think about and understand SINDA in depth.

Empiric&l methods require mention only for the harm they have

done through the limited nature of the understanding which they have pro-

duced. By "empirical methods" is meant a kind of wishful thinking

(unsupported by fundamental understanding) that the solution for a given,

unique problem exists somewhere within the body of previously written

SINDA statements residing in the discarded printouts of prior users of the

program. The methodical use of SINDA opposes this approach with the as-

sertion that the engineer will have little confidence in the answer to his

problem until he understands every detail of its solution. However, the

successful "this worked for him" or "I did it this way last time" engineer

is not to be criticized for his approach, but is to be encouraged by clear

expositions to observe how his special knowledge is merely a valid part of

a more extensive and more useful general practice, The SINDA system is a

complex synthesis of engineer, programmer, and system oriented languages

and features which can be used to full advantage only as the result of a

fundamental understanding of the total system. • Without exception, every

effort to understand SINDA will be rewarded by increased ability to use

SINDA.

©

I-8



2. PRELIMINARY INFORMATION

2.1 BASIC CONCEPTS

Section l assumed that the reader has a basic familiarity with

certain concepts. To be specific, the following general topics are essential

to grasping SINDA, and the potential user should have some basic notion about

them before he attempts to comprehend the rest of the Instruction Manual:

• Computers

• FORTRAN Programs

• FORTRAN Compiler

- Computer Instructions

• Subroutines

• Core Memory

• Magnetic Tapes, Disks, and Drums

• Files

• Punched Cards

These topics will not be treated here, since sufficient exposure to them

can be obtained from a cursory review of the appropriate literature.6,_, 8

2.2 TYPOGRAPHICAL CONVENTIONS

2.2.1 Punched Cards

The standard 80-column punched card is shown in Figure 2-I.

; \

_|_o_|_$_g_I_|_I_|_i_I_|_I|Q_||__|_
,¢ ¢. s t •o o,m=g .l. _Q,lcem_e_:1:o_mnlmmuu_mmm_iu._s|mQ_wlww.wvNwlo,_w_uu_me,_Ni..nm_m .'_ sm

_____I_____________|__________________________I____________I____________________

))_)))))__)_))))_)))))_))))__)))))_)))_))))_))))))_|))))_)))))_))))|)|))))))))))

i _444_444_4_4_4_4444_444444_4444__444444_444_444444444_4__444_44_4_4_44444444_444

|iSS_|$ii$iiiiii_is$i_|i_i_$||_ii|i||_|_i_|ii_|_i_$_||_ii_ii_i|i|ii||t||

_11_1_1_7_|1_71_1_7_1_|_7711_777_11_1_11_11_1_1_11_17_1_11_1_1

________________|_:_|_____________________________|________________________|____

FIGURE 2-I: STANDARD 80-COLUMN PUNCHED CARD

2-I



(

One character may be punched in each column. In lieu of repeating this

picture throughout the manual each time a punched card needs to be dis-

played, a set of small numbers and arrows will be used to indicate the card

columns of interest as illustrated in Figure 2-2.

i

1 8 2

FIGURE 2-2 :

8

0

SAMPLE CARD COLUMN DESIGNATIONS

Throughout the rest of the manual (in contrast to Figure 2-2) punched cards

will not be identified explicitly as figures. If no small numbers or arrows

appear above a line, the line does not represent a punched card; and,

contrapositively, if a line represents a punched card, at least one small

number and arrow will appear above it. A group of contiguous (i.e., side

by side) card columnsis called a FIELD. Within a field, a single class or

type of data may be punched. Fields are designated in text by the ex-

pression "columns X-Y," or "column X," where X and Y are integers which lie

between one and 80 inclusive. The first expression means "the field or

_roup of card columns from column X to columm Y inclusive." The second

expression defines a field which is only one column wide, being specifically

column X. In general, the small numbers and arrows are used to identify

the first card column of each relevant field.

2.2.2 Type Styles

Two type styles, Gothic and Italic, will be used throughout th_

Instruction Manual in an effort to achieve greater clarity of expression.

This is Gothic type: ABCDEFGHIJKLMNOPQRSTUVWXYZ 12345678905

This is Italic t_pe: ABCDEFGHIJKL_VOPQRSTUVWXYZ 123456?8908

/

©

2-2



©

Gothic type has a special significance only when it appears in a card format

(i.e., on a line with the little card celumn numbers and arrows above it)

where it will always mean that the characters in Gothic type must appear,

literally, exactly as shown, on the punched card which the user prepares.

For example, a card format might be shown as follows:

3 4 6
1 0 0 0

4. _, 4, 4,

NAME RANK SERIAL NUMBER Q

An actual punched card which has been correctly prepared according to this

format would then appear as follows:

3 _ 6
1 0 0 0

•I, Jr ,1, +

NAME RANK SERIAL NUMBER Q

On the other hand, Italic type is used in text and card formats

to indicate that the user must supply something which corresponds to the

thing which was shown in Italic type. That is, the appearance of

something

represents one element of the set of all somethings.

format might be specified as follows:

For example, a card

where:

3 h_ 6

I 0 0 0

+ + ,_ +

n_e rank serial n,_nber Q

Q = length of service, (l = I to $ years, 2 = 4 to _ years,

3 = greater than 6 years)

An actual punched cardwhich has been correctly prepared according to this

format might then appear as follows:

3 .4 6
1 0 0 0

'1, 4' 4' ,I,

WILLIAM E. PISKE CAPTAIN A03096690 l

2-3



Since name is fairly self-explanatory, no additional definition is given.

However, it is not clear, from the card format alone, exactly what Q is; so

it is further described as being the length of eez_ioe, and the actual item

of data to be punched in column 60 must be chosen from the set: [l, 2, 3].

When it is appropriate to identify a particular card format by

placing a descriptive comment on tile same printed line, this comment will

always appear to the right of an Italic dollar sign, 8, as illustrated below:

1 2

1 0 0

ML n_ne o.,4z!.ress

2.3 FILE AND TAPE CONVENTIONS

_(mailing list card foz_nat)

Since SINDA has been, and can be, implemented on a variety of

computers, it is necessary to refer to data storage media by some nomen-

clature which will be independent of the particular system configuration.

FORTRAN "logical unit numbers" are often used for this purpose, but were

rejected for use in this manual because certain installations impose

restrictions on the type of physical storage device which may be assigned

to a given unit. Instead, each serial access storage device referenced

by SINDA is given a proper name as follows:

"Purpose TAPE"

Hence, for example; the Processed Data Tape contains the result of pro-

cessing the user's data, and the Edit Input Tape contains input for the

Edit routine. "Tape" is used as part of the name only because a reel of

magnetic tape is normally associated with computer storage. However, any

"Tape" may, in fact, be a disk file, a drum file, a punched paper tape,

or a magnetic tape, at the option of the user. Appendix D contains a list

of the system oriented unit designations for each of the "Tapes" mentioned

in this manual, along with the recommended type of storage device to which

these units should be assigned.

On the other hand, when speaking in general about saving or re-

trieving data on or from a serial access storage device, the generic term

"file" will be used.

2-4



2.4 TERMSANDDATACONVENTIONS

2.4.1 Co,non Terms and Data Types

The word SUBROUTINE is generally used interchangeably with the

word ROUTINE. INTEGER and FIXED POINT mean the same thing, as do REAL and

FLOATING POINT, The term HOLLERITH* will be applied to strings of alpha-

numeric characters. The term DATA VALUE, or LITERAL, will be taken to mean

one element of the set of all integers, floating point numbers, and 6-

character** Hollerith strings.

Integers will be shown in print as a sequence of digits preceeded,

optionally, by a plus or minus sign. Floating point numbers will appear in

print as a sequence of digits with a leading, trailing, or imbedded decimal

point, prefixed, optionally, by a plus or minus sign, and suffixed, optionally,

by an exponent ( to the base lO) denoted as the letter E followed by an

integer. Hollerith strings of characters will be delimited in print by

quotation marks. These are necessary because blanks are valid characters and

have a specific binary code (i.e., they do not appear on the printed page, but

they do appear explicitly in the computer).

For example:

INTEGERS:

l +12345

-I -12345

12345 15

FLOATING POINT NUMBERS:

1.0 1.5E+6

I0. +I.5E6

.lO -.18E-12

+.15 -20.E-4

15. 1467.812

C.

*The Hollerith code is actually a binary code for representing alphanumeric

characters on punched cards. Other common binarycodes for representing

alphanumeric characters include BCD, ASCII, EBDIC, and FIELDATA. The use

of Hollerith to denote character strings in general is purely arbitrary.

**A 6-character string may be stored in one UNIVAC ll08 computer word. SINDA

implementations on other computers may provide more or less characters per

word. In the general case, a Hollerith data value would contain as many

characters as will fit in one computer word.

2-5



HOLLERITHSTRINGS:

'I' '-I'
'ABC' 'l.O'
'DOGSANDCATS' '(+-+$)'
I !

'12.6'

In contrast to DATA VALUES, another entity, called an IDENTIFIER, REFERENCE

FORM, or VARIABLE, will be used (in a programming sense). For example,

consider the following statement:

PI = 3.14

In this case, 3.14 is a floating point data value, and PI is an identifier.

Note that PI is different from 'PI' which is a Hollerith string. The concept

of identifiers will be elaborated upon in Section 3.3.2.

2.4.2 Computer Data Representation

The user must recognize that the three types, or MODES, of data -

integer, floating point, and Hollerith - are quite different from the

standpoint of the computer. To make this point clear, consider the follow-

ing addition problem:

lO0

+lO0.0

'+lO0.O'

C

©

The answer, in human terms, is three hundred. However, a computer could not

perform such a simple problem directly because its internal binary number

system maintains three different modes of data representation. For example,

on the UNIVAC ll08 computer, the three addends shown above would appear in

binary notation as shown in Figure 2-3.

MODE VALUE

INTEGER 100

FLOATING POINT I +100.0

HOLLERITH

BINARY REPRESENTATION

O0000000000000000000000000000llOOlO0

'+100.0' 100010110001110000110000111101110000

010000111110010000000000000000000000

i

FIGURE 2-3: BINARY REPRESENTATION OF DATA (EXAMPLE l)

2-6



Similarly, the result could be expressed in one of these ways, as shown

in Fiuure 2-4.

MOOE VALUE BINARY REPRESENTATION

INTEGER 300 000000000000000000000000000100101100

! "FLOATING POINT +300.0 OlO001001100lOllO0000000000000000000
H, ,

HOLLERITH '+300.0 ° 1000101100111100001100001111011%0000

FIGURE 2-4: BINARY REPRESENTATION OF DATA (EX_PLE 2)

It has been the intent of this section to impress upon the reader

the importance of understanding that the computer should not be considered

as a black box within the context of SINDA. The potential user need not,

by any means, become a computer software or hardware expert in order to

utilize the full capability of SINDA. However, by the same token, the

user who insists on viewing the computer as a black box will find that he

has set for himself an unduly difficult road toward a complete understanding

of SINDA.

(
\

2-7



°

!

_. $1NDA INPUT DECK

3.1 INTRODUCTION TO THE INPUT DECK

3.1.1 Basic Concepts

The SINDA input deck is the means by which the user specifies to

the computer the nature of his problem and the method for solving it. Two

large classes of problems may be handled by SiNDA: (1) THERMAL network

solutions, and (2) GENERAL mathematical manipulations.

Thermal problems require the user to specify a network of thermal

modeling elements (i.e., lumped parameters). Three DATA BLOCKS, (groups of

cards), called NODE DATA, SOURCE DATA, and CONDUCTOR DATA, are provided to

satisfy this requirement. Using various special formats described later, the

user prepares NODE, SOURCE, and CONDUCTOR DATA cards which uniquely establish

the characteristics and interconnections of the elements of his thermal net-

work. The preprocessor will assemble and save the element characteristics

data in large tables stored in the computer's memory. For example, when the

preprocessor reads the NODE DATA cards, it will construct a table of initial

temperatures and a table of nodal capacitances. The preprocessor also

assembles the element interconnections data into an internally coded numerical

list called the PSEUDO-COMPUTE-SEQUENCE (PCS). Operationally, the PCS serves

two purposes: (I) it specifies the order of computation to be used when per-

forming network heat transfer calculations*, and (2) it supplies indices into

the data tables where the network element characteristics may be found**.

For example, to compute the heat transferred during some delta-time, the

computer must be instructed to perform the calculation for node-X connected

to node-Y through conductor-Z; and it must be informed as to where it can

locate the characteristics (temperature, capacitance, conductance, etc.) of

these specific network elements.

t ,

h

o

*Functionally, the PCS serves as an economical indexing technique for

specifying sparse matrices such that zero elements do not occupy explicit
memory locations.

**Though it is of no particular consequence to the user, the PCS is actually

divided into two segments, PCSI and PCS2. Entries are made in PCS2 whenever

additional indices and instructions are required in order to automatically

evaluate network elements whose values vary with temperature (and/or time).

3-I



Two additional data blocks, called CONSTANTS DATA and ARRAY DATA,

are provided in the SINDA input deck to allow the user to inciude in his

problem numerical values which are not strictly classifiable as thermal

network element characteristics. The preprocessor assembles CONSTANTS and

ARRAY data into tables in memory for later use in the problem solving

computations. Since problems of the GENERAL type do not refer to a thermal

network, only the CO¢_STANTS and ARRAY data blocks may be used for this type

of problem. THERMAL problems, however, require that all data blocks be

present in the input deck.

In addition to the five groups of cards designated as data blocks,

the SINDA input deck requires four groups of cards designated as OPERATIONS

BLOCKS. These four blocks, called EXECUTION, VARIABLES I, VARIABLES 2, and

OUTPUT CALLS, are translated by the preprocessor into four FORTRAN sub-

routines, and serve, therefore, to specify the individual instructions re-

quired to solve the user's problem. The subroutine which results from the

translation of the EXECUTION block is called by a main program (also con-

structed by the preprocessor) whose only purpose is to communicate to the

subroutine the length and location of the various tables assembled from the

five data blocks. For a simple thermal problem, such as presented in

Section 1.2, the user need not concern himself with the complexities of

computer programming because the SINDA Subroutine Library contains several

versatile "canned" routines for solving thermal networks. To solve such a

problem, the user needs only to select an appropriate routine, punch the

name of this routine on a card, and insert this card in the input deck as

his EXECUTION block. This simple procedure, however, belies the extensive

computational potential and versatility of the SINDA system.

In addition to a call on one or more of the standard network

solution routines, the EXECUTION block may contain calls to other routines

in the SINDA Library. The Library contains a wide variety of thermal,

mathematical, matrix, input/output, and utility routines which may be

"pieced together" within the SINDA operations blocks in order to form a

complete, specialized "program" for the solution of the user's problem.

©

\.

3-2



!

For example, SI_(DA works in the Farenheit temperature system-; to produce

table of node te,_peratures in degrees Rankine, the user need only insert

three cards in his EXECUTION block: one to call for the network solution,

one to call for the addition of 460.0 to each temperature, and one to call

for .the printout of the node temperature table.

Clearly, the SINDA system makes it possible for the user to avoid

the programming details of such things as "DO-loops, DIMENSION statements

and INDEX VARIABLES," and yet still produce a solution "program" which is

tailor-made for his problem. If the user does understand FORTRAN, he may

include FORTRAN statements in the operations blocks along with any neces-

sary SINDA subroutine calls. The translated subroutines would then contain

the user's FORTRAN statements in addition the FORTRAN statements generated

by the preprocessor from SINDA statements.

The network solution routines which may be called from the

EXECUTI_ block are made quite versatile through the use of the other three

operations blocks. These blocks allow the user to interject sequences of

operations, specific to the problem at hand, at certain points in the midst

of the "canned" network solution calculations. Briefly, the subroutine re-

sulting from the translation of the VARIABLES l operations block is called

just prior to the network computations for a delta-time step; the VARIABLES 2

subroutine is called just after the computations for a delta-time step; and

the OUTPUT CALLS subroutine is called at a time interval specified by the

user.

To summarize, five groups of cards, called "data blocks," are used

to specify the data associated with the user's problem. The NODE DATA block,

SOURCE DATA block, and CONDUCTOR DATA block specify the characteristics and

*Although all other units may be chosen arbitrarily as long as they are

consistent, SINDA presently imposes the Farenheit system on all temperatures.
This is due to the fact that the offset to absolute zero, 460 °, is built into

the network solution routines for the purpose of evaluating radiation heat

flow (which is a function of absolute temperature to the fourth power).

Since current engineering practice indicates an increasing use of the metric

system of units, this temperature offset will probably be converted to a
user-selectable option in the near future.

C/

3-3



connections of the thermal network. The CONSTANTSDATAblock and the ARRAY

DATAblock specify other numerical information which maybe needed for the

solution of the problem. The preprocessor assembles the information in

the data blocks into tables of values in memoryfor later use by the solution

routines. Four groups of cards, called "operations blocks," are used to

specify the sequence of operations required to solve the particular problem

at hand. The EXECUTIONblock specifies the main flow of the solution. At

particular points in the computational sequence within the solution routines

(called from the EXECUTIONblock), the operations specified in the VARIABLESl,

VARIABLES2, and OUTPUTCALLSblocks are performed. The preprocessor trans-

lates the four operations blocks into four corresponding FORTRANsubroutines

which serve as the intermediate link between the SINDAlanguage and the

computer.

3.1.2 Basic Structure

The basic structure of the SINDA input deck is shown in Figure 3-I.

This figure illustrates the five data blocks and the four operations blocks

in the correct input sequence. As shown, they are preceded by the INPUT

CONTROL CARD and TITLE BLOCK, and they are followed by parametric run

decks, if used, and an END OF DATA CARD.

The INPUT CONTROL CARD is used to specify the source and type of

input which the preprocessor is to expect. For the basic input deck shown

in Figure 3-I, this card must be present but is left blank. Input options

for which the INPUT CONTROL CARD is not blank, and, correspondingly, for

which the input deck is not structured as shown in Figure 3-I, are discussed

in Section 4.4.

The TITLE BLOCK is discussed in Section 3.2; the data blocks

are discussed in Section 3.3; and the operations blocks are discussed in

Section 3.4.

Parametric run decks provide for simplified parametric analyses

by permitting selective modifications to be madeto the data input in the

data blocks. The use of this feature is discussed in Section 4.4.3.

*Users of CINDA-3G will recognize that the INPUT CONTROL CARD in SINDA is

the same as the STORE/RECALL card in CINDA-3G. The more general name,
INPUT CONTROL CARD, has been applied to this card because it is now used for

other options in addition to the Store/Recall option.

3-4
\

r

©



decks.

The

It is

END OF DATA card serves as the

prepared as follows:

I

8 2

+ ÷

BCD 3END OF DATA

logi cal end of all SINDA input

ElqoOF DATA

OUTPJTCALLS
KOCK

[I[CUTI_
ILOa[

FIGURE 3-I: BASIC SINDA INPUT DECK

3-5



3.2 TITLE BLOCK

The TITLE BLOCK consists of a problem specification o_._d (which

_erves as the block header card), followed by any number of optional title

eordo and an 'END' card, as follows:

8

prob _e_ specification curd

tit_e cards (optional)

END

The problem specification card informs the preprocessor of the type of pro-

blem which the rest of the input deck represents. For a GENERAL problem,

this card is punched as follows:

]

8 2

BCD 3GENERAL

The code, 'BCD', which begins in column 8, tells the preprocessor that the

card contains Hollerith characters, and the digit, '3', in column 12 indicates

that the Hollerith characters occupy a maximum of 3, contiguous, six-character

fields beginning with column 13." For a THERMAL problem, the user must prepare

one of the two following problem specification oards=

I 2

8 2 l

BCD 3THERMAL SPCS
BCD 3THERMAL LPCS

The first form specifies a THERMAL problem for which the preprocessor will

generate a SHORT PSEUDO COMPUTE SEQUENCE (SPCS). The second form indicates

a THERMAL problem using a LONG PSEUDO COMPUTE SEQUENCE (LPCS). The choice

of LONG or SHORT PCS depends on the network solution routine which will be

selected for use in the EXECUTION block. The detailed descriptions of the

solution routines always specify which type of PCS is required. The selected

PCS is indicated on the problem specification card so that the preprocessor

may set up its logic flags prior to reading any NODE or CONDUCTOR data cards.

*The preprocessor can recognize the words GENERAL and THERMAL, but it must

first be informed, by the 'BCD' code, that the card contains a Hollerith

string.

3-6



f"

Tit_ e_,,4a give the user the opportunity to specify a problem title which

will be printed on each page of output. Following the previously estab-

lished pattern, the Hollerith characters of the title are punched on a card

having a 'BCD' code in columns 8-I0 and a digit in column 12, as follows:

11

8 23

BCD Ntitle-(up to 6*N ol_zraoters)

where: N - non-,ero digit

Each title card may contain a maximum of 54 characters of title information

when the largest digit, 9, is supplied as N. No _itle ec_ds, or as many

as desired, may be included in the TITLE BLOCK. The SiNDA preprocessor

will print each _itle c_ as it is read, but retains only the first 120

characters (20 words) of title information for use as an output page

heading. Should the user wish to modify this heading from some point in

the operations blocks, he may access any word of it with the following

reference form:

Hn where: n = word number (l to 20)

In summary, the following points are essential:

Io

o

ao

b.

Co

Problem Specification Card

a. There must be one, and only one, such card in each SINDA
input deck.

b. The card must have a 'BCD' code in columns 8-I0, and the digit
'3' in column 12.

c. The word 'GENERAL' or 'THERMAL' must begin in column 13.

d. A THERMAL specification card must indicate the type of PSEUDO

COMPUTE SEQUENCE (PCS) desired.

e. The PCS code letters, 'LPCS' or 'SPCS', must begin in column 21.

Title Card/s

Title cards may, or may not, be present.

All title cards must have a 'BCD' code in columns 8-I0 and a

non-zero digit in column 12. The value of this digit times 6

equals the maximum number of characters, beginning with
column 13, which will be recognized.

Only the first 120 characters of title information will be

retained for use as an output page heading.

3-7



3. END Card

a. The END card consists solely of the letters 'END' punched in
columns 8-10.

b. The END card must be present where indicated.

3.3. DATA BLOCKS

3.3.1 Basic Concepts

The sections which follow will explain how to prepare the data

cards which constitute the body of each of the five data blocks. The

general format of each data block is the same and is illustrated below:

i

8 2

+ +

BCD 3_e-of-d_ta-b look

da_a cards for this block

END

The first card of each block is known as the BLOCK HEADER CARD. Each data
I

card contains a three-character code in columns 8-10, followed by data

values in columns 12-80, as follows:

I 8

8 2 0

+ ,I, ,k

code one-or-more-da ta-va lues

The code is used to specify the exact meaning which the preprocessor should

associate with the data values. If the user wishes to place a comment on

a data card, a dollar sign, $, may be used to terminate the preprocessor's

search for data values prior to column 80, as illustrated below:

1 8,

8 2 0

4, _, +

code data-values $ comments

For all codes, except the BCD and REM codes, data values are punched in

variable length fields which are separated by commas. Since the preprocessor

assumes that the first field begins in column 12, a comma should not be used

to signify the start of this field. Similarly, the preprocessor assumes that

0

3-8



the last field on a card ends with column gO or the column preceding a

dollar sign, and, therefore, a comma should not be used to signify the

end of this field. These points are illustrated below:

1 8

8 2 0

+ +

_ode fis Idjfie Id_fie _d,fie ld_f_e ld

Qode fie Id_fie I._$oorrrnents

In the ARRAY DATA block, where the data values belonging to a given array

may be entered on several successive cards, it is particularly important

to observe the last point stated above: do not place a comma after the

last field (i.e., data value) on any of the cards.

There are three kinds of data values which may be punched in a

field: (I) an INTEGER, (2), a FLOATING POINT number, or (3) a HOLLERITH

data value. The following conventions apply to fields and data values:

I. A field of zero length (delimited by two adjacent commas,

a comma in column 12, or a comma in column 80), or a field

containing all blanks is assumed to signify a data value of 0.0.

2. Within a field, up to lO blanks may preceed a data value, and any

number of blanks may follow a data value.

3. No blanks may be imbedded within an integer or floating point
data value.

4. An integer data value may not exceed lO numeric* characters in

length, and, thus, may not exceed the range** of

[-999999999, 9999999999 ].

5. A floating point data value may not exceed 20 numeric characters

(Note: the letter E is also permitted) in length, and, if not

zero, may not exceed the range of [lO-38, lO_e] in absolute value.

6. A Hollerith data value may not exceed six characters*** in length.
The first character of a Hollerith data value must be non-blank

and non-numeric, and if the end of a field is encountered before

six characters are scanned then the missing characters are assumed
to be blanks.

J,

*The following are considered NUMERIC characters: +-.1234567890.

**These limits are based on a computer word of 36 bits, such as used in
the UNIVAC ll08 computer.

***Since the comma is used to separate fields, it obviously cannot be
included in a Hollerith data value.

3-g



For example, the Following data values could be punched on a card as follows:

l

2

$

-5

8

,I,

code

-5

AB

0.0

PVST

0.0

lO000.0

2.4

• AB , , P VS T , 0.0 , lO000.O , 2.4

In the most compressed form, this card could also be punched as follows:

I

8 2

code -5,AB,,P VS T,,I.E4,2.45

The compressed card will be processed by the preprocessor more efficiently

than the first card, since it contains no extraneous blanks.

The BCD code is used when the user needs to input a Hollerith

character string which exceeds six characters in length, or when the user

wishes to include specific leading or trailing blanks, or a comma, in a

character string. As mentioned in earlier sections, a data card using the

BCD code has the letters 'BCD' in columns 8-I0, and a non-zero digit in

column 12. The digit specifies the number of contiguous six character

fields, beginning in column 13, which will be accepted as containing

Hollerith characters. The remaining card columns are ignored. Each field

of six characters is treated as a separate data value and will be stored in

one computer word.

If the user had a long comment to insert in his deck, he might

try to prepare a card as follows:

I

2

STHIS IS A LONG COMMENT

f_

0

3-I0
i



r_
/

This data card would, however, cause a data value of 0.0 to be input because

the first and only data field, which begins in column 12, and ends (because

of the dollar sign) in column 12 is of zero length. A completely blank

data card, used perhaps to provide spacing in the input deck listing, would

have a similar effect because the data field defined by columns 12-80 con-

tains no data value. To provide for the insertion of comments without the

undesired generation of data values, a 'REM' code may be used in columns 8-I0

to cause a card to be printed but otherwise ignored. The general form is

as fol Iows:

l

8 2

+ +

REM _!i thing

Clearly, then, the code in columns 8-I0 of each data card indicates to the

preprocessor how the contents of columns 12-80 are to be interpreted. The

REM code causes columns 12-80 to be printed, but otherwise ignored._ The

BCD code causes the preprocessor to accept the digit in column 12 as indi-

cating the number of six character words which follow and to read in that

many words. The other codes cause the preprocessor to scan the card for

variable length data fields containing data values of the three standard

types (integer, floating point, Hollerith).

In the following sections, the data blocks will not be discussed

in the order of their appearance in the input deck. This is necessitated

by the fact that data defined in the CONSTANTS and ARRAY DATA blocks are

referenced from the other data blocks when variable capacitance nodes,

variable sources, or variable conductance conductors are defined.

3.3.2 Constants Data Block

3.3.2.1 Basic Concepts

The purpose of the CONSTANTS DATA block is to provide a means for

defining and initializing SIMPLE VARIABLES. A simple variable requires one

core storage location and is referenced within a program by a symbolic name

or identifier. The name of a simple variable is associated, not with a

*Columns 12-80 of the REM card will be printed if the card appears among

the data blocks. If the card appears among the operations blocks, columns

12-72, only, will be printed.

3-11



specific data value, but with the address of the memory location where the

current value of the variable is stored. The following example illustrates

the above points:

Consider a cere memory as follows:

ADDRESS CONTENTS

l

2

3

The following FORTRAN statements establish a correspondence between the

name of each simple variable and the address of a memory location:

ADDRESS CONTENTS

ITEST = 8 ITEST- l 8 I
|

JTEST = 4 JTEST *---*2 4 I

iKTEST = lO KTEST _ 3 lO

If, for example, ITEST corresponded to 8 (instead of l) then ITEST would,

indeed be constant. However, ITEST is a (simple) variable, and a subsequent

FORTRAN statement such as:

ITEST = JTEST + KTEST

would result in the following:

ADDRESS CONTENTS

ITEST _ 1 14

JTEST _ 2 4

KTEST _ 3 lO

Hence, when the user defines a SINDA "constant," the value

stored at the location associated with this constant's identifier (or name)

may be altered at any convenient point in the user's program (i.e., from

the operations blocks).

Users who are not familiar with the manner in which a computer

operates often encounter subtle difficulties when using simple variables.

The problem usually stems from a general inability to divorce onself from

formal logic and to reorient one's thinking towards sequential computer

logic. The basic difficulty can be illustrated with the following example:

3-12



Consider the following statements:

l-J

K-I

J=5

In view of these statements, consider the following question:

DOESK EQUAL5?

The answer, in the realm of formal logic, is YES,which follows from the

law of transitivity. In the realm of the computer, however, the answer

is NO, for two reasons: (1) the computer is a sequential machine (i.e.,

it does one thing, then it does another, then another, etc.), and (2)

identifiers are associated with addresses, not contents, in core memory.

These points will be clarified if the three statements and the computer

actions which they produce are examined in sequence, as follows:

Assumethe initial state of the core memoryappears as shownhere:

Then,

And,

I = J produces:

ADDRESS CONTENTS

ii

Hd

K Ill
ADDRESS CONTENTS

121

ADDRESS CONTENTS

KIproducesI!I
And, final ly ADDRESS CONTENTS

J = S produces: I I 2 I

i
K .2 J

Hence, it is clear, K does not equal 5.

3-13



3.3.2.2 Control Constants

"lhere are two types of constants which may be defined in the

CONSTh_ITS DATA block: CONTROL constants, and USER constants. Control con-

stants have preassigned names and are used primarily for communicating

various parameters to the network solution routines. Some constants, called

DUMNY control constants, do not have preassigned uses and may therefore be

utilized for temporary storage of values whose significance is peculiar to

the user's problem.

If a particular routine called in an operations block requires a

value for a certain control constant, and if the user has not specified

some reasonable value, an appropriate error message will be printed and the

program will be terminated. The user should check the description of each

subroutine being used to determine the control constants required and the

acceptable range of values for each. The following is a list of all SINDA

control constant names and a brief description of each. The FORTRAN naming

convention applies (i.e,, names representing integers begin with I through N,

inclusive; all others represent floating point values). This list is not

meant to overwhelm the neophyte user. As illustrated in the sample problem

in Section 1.2, many problem solutions require the use of only two or three

control constants, and experience shows that most problems will require the

user to specify no more than four or five of them. An advanced discussion

of the most commonly used control constants is deferred at this point, but

will be taken up in Section 4.6. By then, the user will have a better

understanding of the general operation of the SINDA network solution routines,

and the role which the control constants can serve.

ARLXCA Maximum arithmetic node relaxation temperature change
allowed between iterations.

ARLXCC Maximum arithmetic node relaxation temperature change

calculated by the program for the current iteration.

ATMPCA Maximum arithmetic node temperature change allowed

between time steps.

ATMPCC Maximum arithmetic node temperature change calculated

by the program for the current time step.

BACKUP Program flow backup switch checked after calling the

VARIABLES l and VARIABLES 2 blocks. If non-zero, the

current time step calculations are erased and repeated.

BALENG System energy balance which must be maintained by

steady state solution routine CINDSM.

3-14

©

©



\_

CSGFAC

CSGM.AX

CSGMIN

CSGRAL

CSGRCL

DAMPA

DAMPD

DRLXCA

DRLXCC

DTIMEH

DTIMEI

DTIMEL

DTIMEU

DTMPCA

DTMPCC

ENGBAL

LAXFAC

LINECT

LOOPCT

LSPCS

NARLXC

NATMPC

NDTMPC

NOCOPY

NLOOP

OPEITR

Time step multiplication factor.

Maximum value of the stability factor, C-/ - calculated
by the program for the current time step _.zGiJ'

Minimum value of the stability factor, C./_G i calculated
by the program for the current time step! J'

Allowable range between CSGMIN and CSGMAX (not presently

used).

Range between CSGMIN and CSGMAX calculated by the program.

Damping factor for arithmetic nodes.

Damping factor for diffusion nodes.

Maximum diffusion node relaxation temperature change
allowed between iterations.

Maximum diffusion node relaxation temperature change

calculated by the program for the current iteration.

Maximum time step allowed.

Specified time step to be used by the implicit solution
routines.

Minimum time step allowed.

Actual time step selected by the program.

Maximum diffusion node temperature change allowed

between time steps.

Maximum diffusion node temperature change calculated by

the program for the current time step.

System energy balance calculated by the program.

Number of iterations over which the non-linear network

elements will be held constant.

Number of lines printed on the current page of output.

Number of iterations actually performed.

Problem type indicator:

0 = THERMAL SPCS, 1 = THERMAL LPCS, 2 = GENERAL.

Relative number of the node responsible for the current
value of ARLXCC.

Relative number of the node responsible for the current
value of ATMPCC.

Relative number of the node responsible for the current
value of DTMPCC.

"No copy" switch for use by matrix operation subroutines.

Maximum number of iterations to be performed.

Switch, which, if non-zero, causes the OUTPUT CALLS

block to be activated at each iteration.

3-15



OUTPUT

PAGECT

TIMEM

TIMEN

TIMEND

TIMEO

ITEST

JTEST

KTEST

LTEST

MTEST

RTEST

STEST

TTEST

UTEST

VTEST

Time interval for activating the OUTPI'T CALLS block.

Number of pages of output currently printed.

Mean time for the current computation interval.

New tim_ at the end of the current computation interval.

Problem stop time.

Old time at the start of the current computation interval.

Also serves to specify the problem start time.

Dummy integer control constant.

Dummy integer control constant.

Dummy integer control constant.

Dummy integer control constant.

Dummy integer control constant.

Dummy floating point control constant.

Dummy floating point control constant.

Dummy floating point control constant.

Dummy floating point control constant, i

Dummy floating point control constant.

3.3.2.3 User Constants

USER constants are defined and input as required for a particular

problem. Each such constant is assigned a positive integer reference number

(l to 5 digits) by the user. As each constant is accepted by the preprocessor,

it is renumbered in sequence. The user assigned reference number is called

the ACTUAL number, and the preprocessor assigned sequence number is called

the RELATIVE number. Although the subroutines resulting from the trans-

lation of the operations blocks use the relative numbering system to access

the table of user constants, it would be quite tedious for the user to do

so, directly. Hence, the preprocessor maintains an internal table of ACTUAL

vs RELATIVE constant numbers and performs the conversion from one to the

other whenever a reference to the table of user constants is encountered.

While this feature makes it generally unnecessary for the user to keep track

of the relative input order of these constants, it is often useful to recognize

that they occupy sequential core locations in exactly the same order as input

©

3-16



in the CONSTANTS DATA block*. User constants are. referenced, outside of the

CONSTANTS DATA block, by the following form:

Kn

where: n = Actual const_t reference number

For example, the value of user constant number 8 would be referenced by: KS.

User constants may be initialized with any type of data value (i.e., integer,

floating point, or Hollerith).

3.3.2.4 Input Options

All constants data cards are placed between the CONSTANTS DATA

block header card and an END card, as follows:

! 8

8 2 0

BCD 3CONSTANTS DATA d

_onstants data cards _

END .

where: d = dictionary printout flaG= blank or _terisk, "_'.

If '_'j a list.of ACTUAL vs RELATIVE nulnbers will

be prin_ed after processing _he block.

':' may be used as a fieldIn the CONSTANTS DATA block only, an equal sign, ,

separator in place of a comma. The choice of actual reference numbers is

purely arbitrary within the limitation that each must be a positive integer

less than 32768. However, if a particular user constant is referenced from

the NODE, SOURCE, or CONDUCTOR DATA blocks, then its ACTUAL reference number

may not exceed 16383. As many as 32767 user constants may be defined in a

given problem. However, all constants referenced from the NODE, SOURCE, or

CONDUCTOR DATA blocks must occur among the first 8191 user constants in the

CONSTANTS DATA block (i.e., their RELATIVE numbers may not exceed 8191).

*Since the locations for all of the control constants are reserved, in

advance, in FORTRAN NAMED COM_ION, their definition will not affect the

ordering of the user constants even if the two types of constants are

intermingled when inputting the block.

3-17



i

{

Star_dard Option (3 blanks card code)

The simplest form of CONSTANTS DATA input uses the blank card code

and requires only two data values for the definition and initialization of

each constant, as follows:

!
2

,I.

IDENTIFZER, VALUE

ITEST, 14

RTEST,14.0

14,1TEST

NLOOP=30,9= LOOPS ,STEST=I. 6,4=5,7=6.8

$(basic format)

$(ezample 1)
$(exornple 2)

$(exaraple 3)

$(excurcole4)

where: IDENTIFIER = n_ne of any control constant or a positive

integer reference number

VALUE = any data value (integer, floating pointj or
Hollerith)

It is the user's responsibility to insure that control constants are assigned

initial values of the proper type (i.e., names beginning with the letter I-N,

inclusive, receive integer values; all others receive floating point values).

User constants may be assigned any type of data value.

Example I assigns an integer value of 14 to the •integer dummy

control constant ITEST. Exile 2 assigns a floating point value of 14.0

to the floating point dummy control constant RTEST. Exc_n_le 3 defines user

constant number 14 and assigns to it the Hollerith data value 'ITEST '.

Example 4 illustrates how the equals sign may be used to ease the readability

of a data card which defines several constants. This example assigns the

integer value 30 to integer control constant NLOOP, the Hollerith data value

'LOOPS' to user constant number 9, the floating point value 1.6 to floating

point dummy control constant STEST, the integer value 5 to user constant"

number 4, and the floating point value 6.8 to user constant number 7. Out-

side of the CONSTANTS DATA block, the values defined in the four examples

would be referenced by: ITEST, RTEST, Kl4, NLOOP, Kg, STEST, K4, and K7,

respectively.

v

• I

3-18



3.3.3

3.3.3.1

Array Data Block

Basiclnput

All array data cards are placed between the ARRAY DATA block

header card and an END card, as shown below:

I

8 2

BCD 3ARRAY DATA

arr_ data cards

END

where:

8

0

+

d

d = dictionary printout flag: blank or asterisk, '*'.

If asterisk, a list of arrxd reference numbers vs

relative index within the teble of all arrays will

be printed after processing the block.

An array is an ordered list of data values occupying sequential

locations in memory. In SINDA, an array is defined by entering a sequence

of three or more data values in the ARRAY DATA block. The first data value

must be a positive integer* which will be interpreted as the user-assigned

array reference number. The last data value must be the Hollerith value

'END '. All intervening data values will be accepted as being the

ELEMENTS of the list which constitutes the array. The general form is as

fol lows :

!

2

arr_ number, one or more data values, END $(basic format)

14,8,4.6 ,ALPHAX ,16 ,END $(examFle I)

Exmple I defines array nu_er 14, which consists of four data values (or

elements): the integer value 8, the floating point value 4.6, the Hollerith

value 'ALPHAX', and the integer value 16.

©

\ ,'
.,k

*User's of CINDA-3G will notice that the so-called "negative array" is not

included in .this discussion. The "negative array" feature is still available

in SINDA but its use is discouraged since experience has shown it to be a

source of more confusion than utility.

3-20



The array reference number may generally be as large as six digits

(e.g., 999999), although arrays referenced from the NODE, SOURCE, or

CONDUCTOR DATA blocks must have array reference numbers that are less than

16384. The total number of arrays plus the total number of elements in each

array may be as large as 65535. The definition of an array may use as many

ARRAY DATA cards as required, with any convenient number of data values

placed on each card. More than one array may be defined on a single card.

If the list of elements to be entered in an array contains several

consecutive Hollerith data values, then the user may find it convenient to

use the 'BCD' card code to input these values. The following example

illustrates the use of the 'BCD' code in the ARRAY DATA block:

I

8 2

20

BCD 3TEMP OF NODE 126
END $(ex_le 2)

The three cards in example 2 serve to define array number 20 which contains

the Hollerith data values: 'TEMP 0', 'F NODE', ' 126 '. (Note that the

third data value is a Hollerith value consisting solely of numerical

characters. The use of the 'BCD' code prevents the preprocessor from mis-

interpreting this value as an integer.)

The user may reserve any number of memory cells within an array,

without actually specifying data values for each cell, by utilizing the

'SPACE' option. Any time that the following ordered pair of data values

is encountered in the list of data values defining the contents of an array,

the preprocessor will replace these values with the specified number of

ze roe s:

whe re :

SPACE,M

I0,I ,SPACE,6,4 ,END $(exa_le 3)

M = Number of memory cells, with an initial value of zero, to be

included in the array at this point (integer)

3-21



E=o_ple _ defines array number lO which contains 8 data values: I ,0,0,0,

0,0,0, and 4. Note that the data values 'SPACE' and 6 do not become part

of the array, but rather cause the preprocessor to allot sufficient memory

space within the array for the storage of 6 data values. The SPACE option

may be used any number of times within the defining list for an array, and

may be intermingled with explicit data values, as required. The SPACE

option is used primarily for reserving arrays to be used for the temporary

storage of intermediate computational values and the accumulation of time-

series results (e.g., temperature histories).

3.3.3.2 Basic Concepts

Numerous SINDA subroutines available in the operations blocks,

as well as the interpolation and polynomial evaluation options available

in the NODE, CONDUCTOR, and SOURCE DATA blocks, require that the exact

number of data values in an array be specified as an integer. In order to

reduce the number of inpu t parameters and the chance of error, the pre-

p_)cessor counts the number of data values in each array and enters this

integer count as the zero-th element of the array. That is, an array de-

fined on a card as:

1

2

N, vl, v2,. ,.,vm, END

N = Array number; vi = data values;
where:

resides in_ core memory as:

where:

whe re:

mJuijv2j.., jVm

m = INTEGER COUNT (i.e., the total number of data valuee_ vi)

There are two ways to reference an array, as follows:

An

An+e
(I_TEGER-COUNT form)

(DAmA-VALU_form)

AI4 (example 4)

AlO+l (e=ca_ole 5)

A10+2 (ezomple 6)

n =Array reference number (integer)

e = Numerical position of a specific element within the

array (integer)

i"-

LI

3-22



!
These two forms represent identifiers, and are therefore directly associated

with core memory addresses (see, also, Section 3.3.2.1) where the pre-

processor has stored the user's array data. The memory location specified

by An contains the INTEGER COUNT for array number n, For example, the

location specified by the reference in example 4 contains the integer count

for array number 14 (i.e., the total number of data values in the array).

The memory location specified by An+e contains the e-th data value (or

element) of array number n. For example, the location specified by the

reference in example _ contains the first data value in array number lO.

The reference in exc=nple 6 specifies the second data value in array lO.

Consider the following ARRAY DATA block:

I

8 2

BCD 3ARRAY DATA

14,0,4,3,1,2,END

18,1.6,1.8,2.0,END,39,4.7, ,3,SPACE

2 ,ABCDEF ,4.9 ,ll

BCD 521,145GHIJKL SPACE ENDBCD 4

-9.6 ,-4 ,END
END

The preprocessor would translate the above cards into the table of data

values in Figure 3-2 which can be referenced with the indicated S!NDA

identifiers (addresses). (The equivalent FORTRAN addresses are also shown

for the benefit of those users who find them meaningful.)

3-23



C

SINDA

ADDRESS

A14

Al4+l

A14+2

A14+3

A14+4

A14+5

AI8

A18+l

A!8+2

A18+3

A39

A39+I

A39+2

A.39+3

A39+4

A39+5

A39+6

A39+7

A39+8

A39+9

A39÷I0

A39 +l l

A39+I 2

A39+I 3

A39+I 4

A39+I 5

MEMORY

CONTENTS

4

FORTRAN

ADDRESS

i

A(1)

A(2)

A(3)

3 A(4)

] A(5)

2 A(6)

3 A(7)
i

1.6

1.8

2.0

15

A(B)

A(9)

A(lO)

A(II)
J

4.7 A(12)

o.o A(13)
3

0

0

'ABCDEF'

4.9

11

'21,145'

'GHIJKL'

'SPACE'

' END'

'BCD 4 '

-9.6

-4

A(14)

A(15)
A(16)

A(17)
A(IB)

A(19)

A(20)

A(21)

A(22)

A(23)

A(24)

A(25)

A(26)

©

FIGURE 3-2: SAMPLE TABLE OF ARRAY DATA

3-24



Since both the inte_-acunt and the _-vclue forms of the array reference

represent, in fact, core memory addresses, they may be taken to indicat_ the

location of a specific data value (i.e., a simple variable), as well as the

a_ting location of a sequence of data values (i.e., an array). The inter-

pretation of an array reference depends soley on the context in which it

appears. When a particular context requires an array reference of the integer-

count form, this form only must be used. However, when a context calls for an

array reference of the data-value form, the user need not restrict himself

to references of the form An+l, if the actual sequence of data values which

he wishes to reference begins, in fact, at some location An+e, e#l. Also,

if a context requires a reference to some single quantity and no specific

reference form is required, then either of the array reference forms may

be used as a simple-variable identifier*.

3.3.3.3 Array Structures

In actual use, arrays usually have some degree of structure im-

posed on them. The following paragraphs explain the structure of the most

commonly used arrays.

Singlet Array

$inglet arrays contain a sequence of data values of the same type

representing various values of the same parameter. The order of the values

within the array ispeculiar to its particular usage. For example, the

singlet array required for polynomial evaluation of a variable capacitance

node (see Section 3.3.4.3) contains floating point coefficients in the

order of increasing powers of the independent variable, as shown below:

PO ,P1,P2 _•••,Pn

*These points are discussed in greater detail in Section 3.4.

3-25

f



Doublet Array

This type of array, most often re_quired for interpolation options

and subroutines, contains a sequence of ordered pairs of values usually

representing points on a plane curve. The general order for the data values

in a doublet array is as follows:

xl , yl ,x2 ,y2 , • • • ,x'n,brn

where: xi (i = 1,2,...,n) is 8triotly increasing with i.

x - independent variable;, y = dependent variable

All interpolation options and subroutines require x and y to be floating

point numbers.

Bivariate Array

This type of array is used to represent a function of two inde-

pendent variables: Z = f(X,Y). Data values for a bivariate array are

input in the following order:

n, XI, X2,...,Xn

YI,Z11,Z12,... ,Zln

Y2, Z21, Z22,..., Z2n

•Zm, Zml, Zm2,..., Zmn

where: n = Number of X values (integer)

m = Number of Y values (this value is not input e._plioitly)

Zji = f (Xi, Yj) ; X, Y, & Z = floating point values

Xi (i --1,2,...,n) is strictly increasing in i.

o .,m) is strictly increasing in j.

The value of m is not input explicitly because the value of n (input as

the first data value) and the value of the integer oount (generated by the

preprocessor) are sufficient to define the location of any element in the

©

3-26



array. The following ARRAY DATA cards define bivariate array number 6

which contains values for the function Z = X + Y, taken from the graph

in Figure 3-3.

I

2

6, 3,1.0,3.0,5.0

2.0,3.0,5.0,7.0

4.0,5.0,7.0,9.0,END

Although the sample cards above are more readable, the array could just

as well have been input as follows:

I

2

6,3,1.0,3.0,5.0,2.0,3.0,5.0,7.0,4.0,5.0,7.0,9. O, END

10-

9-

8-

7

6-

S=

4.

3-

2

!

0

• - POINTS ENTERED IN ARRAY DATA BLOCK

I I I I I

X

FIGURE 3-3: S/_PLE BIVARIATE FUNCTION

f/

\

3-27



Trivariate ArraX

This type of array may be thought of as two or more bivariate

arrays, where each bivariate array is associated with a third independent

variable. Trivariate arrays are used to represent functions of the form

F = f(X,Y,Z) for the purpose of evaluating such functions by interpolation.

The data values in a trivariate array are input in the following order:

NXIjNY1,ZI,XI , X2, . ,Xn l

12jF21jF22, ,F2n

NX2,NY2,Z2,XI ,X2 ,...,Xj

YI ,FII ,F12 ,. ..,FIj

£2,F21,F22,. ..,F2j

bivariate "sheet" for z_

irk,,_cl,Fk2,..., Pk4"
NX3 BY$ Z3

• j jQeejeoojeeoje..

A trivariate array may contain as many bivariate "sheets" as desired. The

number of X and Y values in each sheet must be specified as integers NX and

N_', respectively. NX and NY need not be the same for all sheets: All values

Xi, Xi, Zi, _ Fij must be floating point numbers. The following ARRAY DATA

cards define a trivariate array which represents the function F = X + Y + Z

over limited ranges of the independent variables.

l

2

+

I0,3,2,1.0,I.0,2.0,3.0 $(_r_d nu_nber 10)
2.0,4.0,5.0,6.0

3.0,5.0,6.0,7.0

2,3,2.0,2.0,3.0

2.0,6.0,7.0

3.0,7.0,8.0

4.0,8.0,9.0

4,2,3.0,2.0,3.0,4.0,5.0

0.0,5.0,6.0,7.0,8.0

1.0,6.0,7.0,8.0,9.0,END

j-_--.

\

3-28



Matrices

Matrices which are acceptable to the matrix operation subroutines

in the SINDA library may be entered in the ARRAY DATA block by observing

the following input order:

r,o, Mll ,Mi2,. ..,M1o
M21, M22,..., M2o

Mrl ,Mr2 ,...,Mrc

where: r = Number of rows (integer)

e = Number of columns (integer)

Mij = Element of the matrix row-i, column-j.

(floating point)

For example, assume that the following matrix was to be entered in the

ARRAY DATA block :

.O 0.5 0.13.8 3.6 I.

The data card necessary to enter this matrix as array number 9 is as follows"

1

2

9,2,3,2.0,0.5,0.2,0.8,3.6,1.9 ,END

As another example, the following card will cause array number 8 to be

reserved for later use as a 3 x 4 (r x o) matrix:

1

2

+

8,3,4,SPACE,12 ,END

3.3.4 Node Data Block

3.3.4.1

_(3 x 4 matrix of zeroes)

Basic Concepts

lhree types of nodes may be defined and input by the user: diffusion,

arithmetic, and boundary. Diffusion nodes have a positive capaciCance and thus

store energy. In the network solution routines, diffusion node temperatures

are calculated by using a finite difference representation of the parabolic,

3-29



differential heat transfer equation. Three locations in core memory are

reserved for each diffusion node input by the user: one location to store

the temperature of the node, one to store its capacitance, and one for the

heat source* (if any) impressed on the node. Diffusion node data input

options are provided to accommodate capacitance values which are not con-

stant (i.e., vary with temperature, etc.).

Arithmetic nodes have a capacitance of zero. The temperatures of

arithmetic nodes are calculated using a finite difference representation

of Poisson's equation**. Since there is no capacitance value to store,

only two core locations are reserved for each arithmetic node: one for the

temperature, and one for the impressed heat source (if any).

Boundary nodes have no capacitance and may not receive an im-

pressed heat source. A single core location is reserved to store the tem-

perature of each boundary node. These temperatures are not altered by the

network solution routines, but may be modified, as desired, by the user.

Each node is assigned an arbitrary reference number by the user.

As each node is accepted by tile preprocessor, it is renumbered in sequence.

The user assigned reference number is called the ACTUAL number, and the

preprocessor assigned sequence number is called the RELATIVE number. Nor-

mally, nodes are grouped by type and are input in the following order:

diffusion, arithmetic, and boundary. If the node types are intermixed,

they are sorted by the preprocessor before being assigned relative numbers.

The sorting procedure preserves the relative input sequence for each

•group. Thus, for example, the first three diffusion nodes, even if

separated in the input stream by several arithmetic or boundary nodes,

receive the first three relative numbers (i.e., l, 2, 3). The grouping

of the nodes by type results in a saving of memory space as illustrated in

Figures 3-4 and 3-5.

*Each source location is used bythe network solution routines for storing

the _net heat rate experienced by the node. However, they are used by the
user for storing the heat source impressed on the node, and are therefore

called SOURCE locations throughout this manual.

**That is, arithmetic nodes always receive a steady state solution.

3-30



A TYPE

1 DIFFUSION

2 ARITHMETIC

3 DIFFUSION

4 ARITHMETIC

_5 DIFFUSION

6 BOUNDARY

7 ARITHMETIC

8 BOUNDARY

9 ARITHMETIC

10 ARITHMETIC

11 DIFFUSION

12 BOUNDARY

UPSORTED NODE TABLES

IR, TEMPERATURE SOURCE CAPACITANCE

2

3

4

5

6

7

8

9

I0

l]i

12

UNUSED

UNUSED

UNUSED •UNUSED

UNUSED

UNUSED UNUSED

UNUSED

UNUSED

UNUSED UNUSED

A = ACTUAL NODE NUMBER
R = RELATIVE NODE NUMBER

FIGURE 3-4: INEFFICIENT NODE TABLE STRUCTURE BEFORE

SORTING AND PACKING BY PREPROCESSOR

LA TYPE R

1 I

DIFFUSlON 2
5' 3

2 5

4 6

7 ARITHMETIC 7

9 B

10 9

6 tO

8 BOUNDARY l1

12 12

SORTED NODE TABLES

TEMPERATURE SOURCE CAPACITANCE

A = ACTUAL NODI NUMBER
R - RELATIVE NODE NUMBER

FIGURE 3-5: STRUCTURE OF NODE TABLES AFTER PREPROCESSING

r•

Although the FORTRAN subroutines resulting from the translation

of the SINDA operations blocks use the relative numbering system to access

the node tables, it would be quite tedious for the user to do so directly.

Hence, the,preprocessor maintains a table-of ACTUAL vs RELATIVE node

3-31



numbers, and performs the conversion from the former to the latter whenever

a node table reference is encountered. The node tables are referenced by

the fol Iowing forms :

where:

Tn -- temperature

Qn -- 8ou.l,oe

Cn = eap_itance

n = Actual node number

By making the actual numbering system available outside the NODE DATA block,

the preprocessor relieves the user of the burden of keeping track of the

relative input order of the nodes. For example, the temperature of actual

node number 6 is referenced by T6, its capacitance by C6, and its source by

Q6, regardless of the relative position of these quantities in their

respective tables.

All node data cards are placed between the NODE DATA block header

card and an END card, as follows:

I

8 2

BCD 3NODE DATA

node data cards

END

As many as 16383 nodes may be defined in any single problem, and at least

one of them must be of the diffusion type.

There are several card codes which may be used on node data cards.

The codes provide options which enable the user to input a large variety of

nodes in a simple, straightforward manner. For all options (card codes),

the following points apply:

I. Diffusion nodes must be given a positive node number and

a positive capacitance.

2. Arithmetic nodes must be given a positive node number and a

negative (not zero) capacitance. (The negative capacitance

value acts as a flag to signify that the node is of the

arithmetic type.)

3. Boundary nodes must be given a negative node number and a

non-negative capacitance. (The capacitance value is ignored

but is present for the sake of consistency, and the negative

sign on the node number serves as a flag to signify that the

node is of the boundary type.)

3-32

©



4. If a card code requires M data values for the definition

of a node (or group of nodes), then the card may contain N

groups of M values (N = l, 2,...) in lieu of preparing N

separate cards with M values on each card. This rule implies,

also, that a node definition may not be split across two

cards (even if they have the same card code).

5. An initial temperature must be specified for all nodes,

regardless of type.

6. ACTUAL node numbers may be as large as six digits (e.g.,

999999).

Figure 3-6 summarizes the node data input options which are

available to the user. Before proceeding to a detailed discussion of each

option, two points should be clarified: (1) impressed heat sources are

not input with node data; they are input in the SOURCE DATA block, in which

case they are transferred to the source locations automatically when needed,

or they may be entered in the source locations directly with appropriate

operations in the VARIABLES l block; and (2) the tables of nodal capacitances

are always accessible to the user in the operations blocks, and hence, a

"constant capacitance value," from the standpoint Of node data input, need

not be held constant during the entire course of a problem's solution.

(

OPTION

(CODE)

3 blanks

CAL

_N

SlY

S_

SIN

SPM

DIV

DPV

DIM

OPM

BIV

NODE TYPE DESCRIPTION

DIA B

v X X TO INPUT A SINGLE NODE WHERE THE CAPACITANCE IS GIVEN AS A SINGLE, CONSTANT VALUE

TO INPUT A SINGLE NODE WHERE THE CAPACITANCE WILL BE CALCULATED BY THE
PREPROCESSOR FROM FOUR FACTORS INPUT BY THE USER.

x x x TO GENERATE AND INPUT A GROUP OF NODES, _ACH HAVING THE SAME INITIAL TEMPERATURE
AND THE SAME CAPACITANCE.

TO INPUT A SINGLE NODE _IERE THE CAPACITANCE VARIES WITH TEMPERATURE. FOR SIV,
THE CAPACITANCE IS FOUND BY INTERPOLATING ON AN ARRAY OF TEMPERATURE VS CAPACITANCE.

FOR SPV, THE CAPACITANCE IS FOUND _Y COMPUTING AN N-TH ORDER POLYNOMIAL FUNCTION
OF TEMPEFLMURE.

TO GENERATE AND INPUT A GROUP OF NODES, EACH HAVING THE SAME INITIAL TEMPERATURE
AND THE SAME TEMPERATURE VARYING CAPACITANCE. FOR SIM, C IS FOUND BY INTERPOLATING
ON AN ARRAY OF T VS C. cOR SPM, C IS FOUND 8Y COMPUTING A POLYNOMIAL IN T.

TO INPUT A SINGLE NODE CONSISTING OF TWO MATERIALS _HICH HAVE DIFFERENT TEMPERATURE

VARYING CAPACITANCES. FOR DIV, CI AND C2 ARE TAKEN FROM ARRAYS OF T VS C. FOR DPV,
CI AND C2 ARE COMPUTED FROM POLYNONIALS IN T.

TO GENEPJ_TEAND INPUT A GROUP OF NODES, EACH OF WHICH CONSISTS OF THE SAME TWO
MATERIALS HAVING DIFFERENT TEMPERATURE VARYING CAPACITANCES. FOR DIM, CI AND C2

ARE TAKEN FROM ARRAYS OF T VS C. FOR DPI4,CI AND C2 ARE COMPUTED FROM POLYNOMIALS
IN T.

TO INPUT A SINGLE NODE WHERE THE CAPACITANCE IS A FUNCTION OF TIME AND TEMPERATURE.
THE CAPACITANCE IS FOUND BY INTERPOLATING ON AN ARRAY OF TIME AND TEMPERATURE

VS CAPACITANCE.

0 _ DIFFUSION A • ARITHMETIC 6 " BOUNDARY

FIGURE 3-6: SUMMARY OF NODE DATA INPUT OPTIONS

3-33
i



3.3.4.2 Constant Capacitance Options

Standard Option (3 blanks card code)

The simplest node data card utilizes the blank card code. Cards

using this code must contain three data values for each node, as follows:

I

2

+

N#, I"i,C

5,70'O,I .5

6,80.0,-I .0

-9 ,go.O. lO

-7,70.0,2.0,8,85.0 ,-3.0

_(basic format)

example 1
example 2

exo_ple 3

exc_p le 4

NH = Actual node number assigned by the user (integer data value)

_i --Initial temperature of the node (floating point data value)

C- C_aoitanoe of the node (floating point data value)

The order and type of the three data values must always be exactly as shown.

If N# and C are positive, then the triplet defines a diffusion node; if N#

is positive and C is negative, then an arithmetic node is defined; if N# is

negative and C is positive, then a boundary node is •defined. More than one

node may be defined on a single card by placing more than" one set of three

data values on it.

_7:_le I creates a diffusion node with an actual node number of 5,

an initial temperature of 70.0", and a capacitance of 1.5. Exca_rple

creates arithmetic node number 6 with an initial temperature of 80.0 ° .

Bx(:mple 3 creates boundary node number 9 (not -9, the negative sign serves

only as a flag!) with an initial temperature of 90.0 °. Example 4 shows how

the data values for two nodes may be placed on the same card. The two

nodes created in example 4 are as follows: boundary node number 7 at a

temperature of 70.0 °, and arithmetic node number 8 at a temperature of 85.0 °.

If the four sample cards were input to SINDA in the node data block, in the

order shown," the preprocessor would sort the nodes and assign relative node

numbers as follows:

ACTUAL NODE # RELATIVE NODE #

5 I

6 2

8 3

g 4

7 5

3-34

:



The node data tables created by the preprocessor from the sample input data

would appear as shown in Figure 3-7.

R

I

2

3
4

5

TEMPERAtuRE II'
ii i i

70.0

80.0
i ]i

85.0

90.0
ml

70.0

NODE DAI_A TABLES

iOURCE
0.0

0.0
i

0.0

CAPACITANCE

1.5
i

R -- RELATIVE NODE NUMBER

FIGURE 3-7: NODE DATA TABLES PRODUCED FROM

SAMPLE NODE DATA INPUT CARDS

CAL Opti q.n.

The CAL option allows the user to input node data where the

capacitance is specified as the product of four numbers. By using this

option instead of the blank option, the user is relieved of the burden of

performing capacitance calculations prior to preparing node data input

cards. The CAL option requires six data values for each node, as follows:

1

8 2

CAL _# ,Ti, W,X, Y, Z (/;(basic format)

CAL 15,70.0,1.0,2.0,3.0,4.0 _ e.zamFZe ,5

where: N# = Ac_-ual node number (integer)

Ti = Initial temperature (floating point)

W,X,Y,Z = Floating point data value8 j the product of which i8

the capacitance of the node (i.e., C = W_X*Y*Z*).

3-35



r

The logical choice for the four va]ues would be p, A, L, and Cp*, although

any convenient selection may be made by the user. It is appropriate to use

the CAL option only for diffusion node data input. Example 5 defines dif-

fusion node number 15, having an initial temperature of 70.0 ° and a

capacitance of 24.0.

GEN Option

The GEN option is used to generate and input a group of nodes,

each having the same initial temperature and the same capacitance. This

option requires five data values for each group of similar nodes, as

fol 1ows :

!

8 2

GEN N_, #N,IN, Ti, C _(basie format)

GEN -20,3,5,70.0,I.0 $ exile 6

where: N# = Aotual node number of the first node to be generated (integer)

#N = Total number of nodes to be generated (integer)

IN = Increment to be added to the current, node number to form

the node number of the next node Cnon-zero integer)

Ti - Initial temperavure of all nodes (floating point)

C = C_oacitanoe of all nodes (floating point)

If C and N# are positive, a group of diffusion nodes will be generated. If

C is negative a group of arithmetic nodes is produced. If N# is negative,

then the nodes will all be of the boundary type.

It is important to remember that the negative sign on the N# serves

only as a flag to identify a boundary node during input. For reference pur-

poses, the negative sign is deleted. Hence, exco_ple 6 will generate three

boundary nodes having a temperature of 70.0 ° , with the node numbers being

20, 25, and 30 (not -20, -15, and-lO). The minus sign on the initial N#

signifies that the entire group will be boundary nodes.

©

*p = density, A : area, L = length, Cp : specific heat.

3-36



t

In place of the single data value for C, the user may input four

floating point data values: w, X, Y, and Z. The product of these four

values will be used for the capacitance of the nodes in the same way as

for the CAL option. This alternate form,at is shown below:

l

8 2

GEN NH jHNjZN ,Ti, W,X,Y,Z ¢(alternate format)

where: W,X,Z,Z -- floating point data values, the product of which is the

o_acitance of the node (i.e. j C = W*X*Y*Z).

The basic and alternate formats for the GEN option may not be used on the

same GEN card.

3.3.4.3 Automated Variable Capacitance Options

As stated earlier, the network solution routines call for the

execution of the operations in the VARIABLES l block prior to performing

each iteration on the heat transfer equations. Using this feature, the

user could effect a variable capacitance by specifying VARIABLES l operations

which would insert a new capacitance value in the node capacitance table.

The new capacitance could be calculated using any convenient algorithm

and independent variable. Though completely straighforward, this approach

tends to be rather cumbersome.

The automated options cause variable capacitances to be calcu-

lated wholly within the network solution routines, immediately after the

VARIABLES l operations, and therefore relieve the user of the task of pre-
\

paring and inputting capacitance computation algorithms. As specified by

the user, one of two methods is used to calculate the current value of a

variable capacitance: (1) interpolation, and (2) polynomial evaluation.

For interpolation, the user must input, in the ARRAY DATA block, a doublet

array of (temperature, capacitance) ordered pairs representing points on

the curve of T vs C. The capacitance would then be calculated by perform-

ing linear interpolation on this array using the current temperature of

the node as the independent variable. For polynomial evaluation, the user

must input a singlet array of coefficients (PO,PI,P2,...,Pn) in the ARRAY

3-37



i

DATA block. The capacitance would then be calculated by evaluating the

n-th order polynomial in T {i.e., PO+PI*T+P2*T**2+...+P_.*T**n). These two

methods enable the automated options to be applicable to a vast majority

cf the variable capacitance nodes encountered in modeling real systems.

To enable the same array of points or coefficients to be used

for all nodes made of the same material, all automated options cause the

computed capacitance to be multiplied by a factor before being inserted

in the capacitance table. In this way, for example, the array can be used

to compute pCp, and the multiplying factor can be used for V. In another

application, the multiplying factor could be used to scale the capacitance

to some set of consistent units.

In all cases, the multiplying factor may be input as a floating

point data value, or as a user constant reference of the form Kn, where

n = =otua) ocmstc_t ,_ber. If the latter fore is used, the referenced

constant must be a floating point value.

The interpolation options (except BIV*) require a doublet array

of temperature vs capacitance to be input in the ARRAY DATA block. (Capaci-

tance is used loosely in this context. The array could contain, for

example, values of temperature vs specific heat, as long as the associated

multiplying factor had units of mass.) The array must contain an even

number of floating point data values, as follows:

_IjC1 jT2 jC2_•••I'n_On

The temperature values , Tj, must be strictly increasing with j. If the

node temperature at some time is less than _I, then CI will be used in lieu

of performing an extrapolation; if the temperature is greater than C_, then

On will be used.

The polynomial options require that an array of coefficients be

input in the ARRAY DATA block. The array must consist solely of n+l float-

ing point values, where n is the order of the polynomial. The coefficients

should be entered in the array in the order of increasing powers of tempera-

ture (e.g., the first data value is the constant term, PO, and the (n+l)th

data value is the coefficient, Pn, of T**n). For both classes of options,

*The BIV option requires a bivariate array of time and temperature vs

capaci tan ce.

3-38

,

©



F-"

the arrays are referenced by using the "integer count" form: An, where

n = crray number.

SIV and SPV Options

These options allow the user to define single nodes having tempera-

ture varying capacitances. The SIV* option assumes that the referenced array

is to be used for linear interpolation, whereas the SPV option assumes that

the array contains polynomial coefficients.

values for each node, as follows:

where:

1

8. 2

SIV N#,Ti, AP, F

SPV N#, Ti,AC, F

SPV 25,70.0,A8,0.0001

SIV 25,70.0 ,A9,0.O001

SPV 25,70.0 ,A8,K5

SIV 25,70.0 ,A9 ,K5

N# = Actual node number (integer)

Both options require four data

$(basic format)

_(baslc format)

$ example 7

ez_np Ze 8

$ exo_ple 9

$ ezc_nple I0

Ti = Initial temperature of node (floating point)

AP, AC = Reference to _ array of T vs C points, or polynomial

coefficients, respectively. (_nteGer o_nt form: An,

where n = array number. J

F = Multiplying factor input as a floating point data value,

or a user constant reference of the form: Kin, where
m = constant number.

The following example is presented to clarify the usage of these

two options. Consider a temperature varying capacitance given by the equation:

c- (O.O001).(O.OOST2 + 1.0)

This equation represents the curve shown in Figure 3-8.

*The SIV option in SINDA is identical to the CGS option in CINDA-3G.

3-39



O.O01n

C
A
P
A
C.
!

T O.O00c;
A
N
¢

0.0000

FIGURE 3-8:

.,,R,....,..m • TRUE {URV[

.... • PI(CE*W|$( LIN(AR _P_OIIMMION

/

i_ (40.0.0.(w_'_)

• //

/

I I I I
0.0 I0.0 2(1.0 )0.0 40.0

TI[_P( RATIiR(
/

CURVE OF TEMPERATURE VARYING CAPACITANCE

©

To use the SPV option to define node 25, which has a capacitance

given by the equation above, the user would prepare a node data card as

shown in _xo_Ze ?. The referenced array of polynomial coefficients,

array number 8, would be entered in the ARRAY DATA block, as follows:

I

2

8,1.0,O.O,0.005,END

To use the interpolation option, SIV, to define this node, the

user would prepare a node data card as shown in exompZe 8. The referenced

array of T vs C points, Ag, represents a piecewise linear approximation

of the curve in Figure 3-8, and would be entered in the ARRAY DATA block

with the following card:

I

2

9,0. O,l .O,lO.O ,l.5,20.0,3.0,40.0,9.0 ,END

©

3-40

L ,'



'\,

_"

Exc_ples ? and 8 show that the multiplying factor, 0.0001, was entered

directly on the node data card a_. a fioating point data value. This factor

could also have been entered as a user constant in the CONSTANTS DATA

block, in which case, it would be referenced by its actual constant number

on the node data cards (see exc_ples 9 and 10). The required constants

data card would appear as follows:

1

2

5 = O.O001

Since every multiplying factor entered as a floating point data value re-

quires a core storage location, the use of the user constant reference

is more economical when the same multiplying factor is applied to several

nodes.

SIM and SPM Options

These two options combine the features of the SIV and SPV

options with those of the GEN option. That is, they allow the user to

generate and input a group of nodes all having the same initial temperature

and the same temperature varying capacitance. The SIM option generates

nodes whose capacitance will be evaluated by interpolation, and the SPM

option generates nodes whose capacitance will be evaluated from a poly-

nomial. Six data values are required to define each group of nodes, as

follows:

whe re :

1

B 2

SIM N#, #N, IN, Ti,AP, F

SPM N#, #N, IN, Ti,AC, F

SIM 25,3,5,70.0,_,K5

F

¢(basic format)

_(basic format)

emomp le 11

N# = Actual node number of the first node (integer)

#N = Total number of nodes to be generated (integer)

IN = Increment to be added to the current node number to

form the number of the next node (non-zero integer)

Ti = Initial temperature of all nodes (floating point)

AP, AC = Reference to an array of points of T vs C, or polynominal

coefficients, respectively. (Integer count form:
An, where n = array number)

= Multiplying factor (floating point data value or user

constant reference of the form: Kin,where m = actual
constant number)

3-41



E.m_le 11 defines three nodes, numbers 25, 30, and 35, whose capacitance

will be computed by interpolating on array 9, with the result multiplied by

constant 5. The use of a floating point data value for the multiplying

factor is discouraged because the preprocessor will store the data value in

core memory #N times. However, a user constant will occupy one location

but will be referenced #N times, thus saving #N-l core memory locations.

DIV and DPV Options

These options allow the user to define a node which is made of

two materials, each having different temperature varying capacitance

properties. Both require an array and a multiplying factor for each of the

two materials. For the DIV* option, the result of interpolating on the

first array, times the first multiplying factor, is added to the result of

doing likewise with the second array and the second multiplying factor.

The action of the DPV option is similar, except that the arrays are assumed

to contain polynomial coefficients. The card formats are shown below:

1
8 2

DIV _I#,Ti ,A.PI,FI ,APS, E2

DPV N#,Ti, ACI,FI,AC2,F2

DIV 40,70.O,AS,KS,A6'2.0

_(basic format)
_ (basio format)

$ ezamp le 12

where: N# = Aatual node number (integer)

Ti = Initial temperature (floating point)

API,AP2 = References to arrays of T vs C points (Integer count
form: An, where n = array number)

AC1,AC2 = Reference8 to arrays .of polynomial coefficients

(Integer count form: An)

F1,F2 = Multiplying faators (floating point data value, or

user constant reference of the form: Kin)

_ample 18 defines node 40, whose capacitance will be computed as the sum

of interpolation on array 8 times constant 5, plus interpolation on array

6 times 2.0

C

©

*The DIV option in SINDA is identical •to the CGD option in CINDA-3G.

3-42



If one of the materials does not have a temperature varying

capacitance, the user may substitute a floating point data value or a user

constant reference for one of the array references on the node data card.

This substitute value will then be used in place of the result of inter-

polation (or polynomial evaluation) on the corresponding array. This

feature makes the following alternate card formats possible:

1
8 2

OlV N#,Ti,SUB,FI,AP2,F2

DPV N#,Ti,SUB, FI,AC2,F2

DIV N# ,Ti,API ,F] ,SUB,F2

DPV N#,Ti,ACI,F1,SUB, F2

_(alternate format)

(alternate foz_nat)

_(alternate format)

_(alternate format)

where:

DIV 35,70.0,I .O,K5,A9,0.O03 _ _xo,rple lS

SUB = Floating point data value, or user oonstant reference of
the form: Km

E=_zple 13 illustrates the case where one of the two materials has a con-

stant capacitance. Since the capacitance of the first material will be

calculated as l.O*K5, it would be quite acceptable to alter the value of

constant K5 at some point in an operations block, and thereby effect a

change in the capacitance of this "constant capacitance" material.

DIM and DPM Options

These two options combine the features of the DIV and DPV options

with those of the GEN option. They are used to generate and input a group

of nodes, all of which have the same initial temperature and all of which

are made of the same two materials having temperature varying capacitances.

The DIM option Causes the capacitance for the two materials to be evaluated

by interpolating on the referenced arrays, and the DPM option computes the

capacitances from polynomial coefficients supplied in the arrays. As for

the other dual material options, multiplying factors are applied to the

results of the calculations on the arrays. Eight data values are required

to define each group of nodes, as follows:

[

3-43



where:

I

8 2

D IM N#,#N, IN, Ti, API, F], AP2, F2

DPM N#,#N,IN, Ti, AC] ,FI ,AC2, F2

DPM 30,3,5,70.0,A8,0,I ,A6,K5

N#

#N

/N

Ti

¢(b_ic format)

$(basic format)

example 24

= Actual node number of the first node (integer)

= Total number of nodes to be generated (integer)

= Increment to be added to the current node number to

form the node number of the next node (non-zero integer .)

= Initial temperature of all nodes (f_oating point)

API.AP2 = References to emrays of points of _ vs C (integer

count form: An. where n = arrec_ number)

ACI.AC2 = References to arrays of polyno,n]al coefficients

(integer count form: An)

FI.F2 = Multiplying factors (_oating point data value, or

user constant reference of the form: Kin)

Ez_pZe 14 defines 3 nodes, numbers 30,35, and 40, each made of two

materials which have a temperature varying capacitance. Polynomial co-

efficients for the first material are supplied in array 8, and coefficients

for the second material are supplied in array 6. The use of a floating

point data value for the multiplying factor is discouraged because the

preprocessor will store the data value in core memory #N times. However,

a user constant will occupy one location but will be referenced #N times,

thus saving #N-l core memory locations.

As for the DIV and DPV options, if one of the materials has a

constant capacitance, the array reference for that material may be re-

placed by a floating point data value or a user constant reference. The

value so supplied or referenced will be used in place of the result of

interpolation or polynomial evaluation on the corresponding array. This

feature permits the following formats:

I

8 2

DIM N# ,#N,IN,Ti, SUB, Fi,AP2, F2 $(alternate format)

DPM N#,#N.IN, Ti=SUB,.FI,AC2,F2 $(alternate format)

DIM.N# ,#N ,IN, Ti,AP_ ,F] ,SUB, F2 _(aIternate format)

D?M N#, #N,IN, Ti,ACl, FI, SUB, F2 _(alternate format)

whe re: SUB = Floating point data value, or user constant reference of

the form: Km

0

©

x .

3-44



/

.B.IVOption

The BiV option enables the user to define a node having a capaci-

tance which is a function of both time and temperature. The node data

card for such a node is similar to that for the SIV option, and requires

four data values for each node, as follows:

I

8 2

BIV N#,2i, AB,F

BIV 55,70.0 ,_. ,K4

whe re:

$(basic format)

$ example 15

N# = Actual node number (integer)

Ti = Initial temperature of the node (floating point)

AB = Reference to a bivariate array of temperature

and t_me vs capacitance. (integer count form: An)

F = Multiplying factor (floating point data value, or user

const_t reference of the form: Kin)

Example i5 defines node 55 whose capacitance, as a function of time and

temperature, is supplied in bivariate array number 2. Section 3.3.3.3

contains a description of the structure of a bivariate array. In this

application, the X independent variable should be temperature, the Y

independent variable should be mean time, and the Z dependent variable

should be capacitance. When evaluating a node defined with the BIV option,

the network solution routines will perform a bivariate interpolation on

the referenced array, using the current temperature of the node and the

mean time for the current computation interval (control constant TIMEM)

as the values of the independent variables.

3.3.5 Source Data Block

3.3.5.1 Basic Concepts

This block provides the user with a convenient means for defining

heat sources which are to be in_)ressed upon the nodes defined in the NODE

DATA block. Sources are always input in units of:

ENERGY

3-45



As de__cribed in Section 3.3.4.1, one memory location in the heat

source table is reserved for each diffusion and arithmetic node that is

defined. These loc_tions may be referenced from the operations blocks by

using the form: Qn, where n = aot-_al nod_ n_er. All Q locations are

set-to zero by the network solution routines at the beginning of each time-

step iteration. It is appropriate to use operations in the VARIABLES l

block to reload the Q locations with the required source values because

this block is called just prior to performing the heat transfer calculations.

By providing a "shorthand" method for defining the most common types of

sources (i.e., constant, time variant, and temperature variant), the SOURCE

DATA block relieves the user of the burden of preparing source computation

algorithms and inputting them in the VARIABLES l block.

It should be clearly understood that the preprocessor will NOT

make any direct entries in the heat source table (Q-locations) based on

data in the SOURCE DATA block but, rather, it will provide for appropriate

operations following the VARIABLES l block which will automatically add

the specified values to the Q-locations during each time-step iteration of

the network solution. Since sources defined in the SOURCE DATA block are

ADDED to the Q-locations after the VARIABLES l operations are completed, the

user need not fear that these SOURCE DATA values will erase any Q-location

entries made directly from the VARIABLES l block.

All source data cards are placed between the SOURCE DATA block

header card and an END card, as follows:

I

B 2

BCD 3SOURCE DATA

source data c_rds

END

If the user has no source data cards to enter in the input deck then the

block header card and END card need not be present (i.e., the SOURCE DATA

block is optional).

3-46



The source data input options and their associated card codes are

sun_arized in Figure 3-9.

OPTTON OCSC_XPTXON

(3 blanks) TO IMPRESS A CONSTM_T H_AT SOURCE ON A SINGLE NODE.

u

GEN TO IMPRESS THE SA/4E CONSTANT HEAT SOURCE ON SEVERAL NOOES.

• ,, ,,

SIV TO IMPRESS A TEMPERATURE VARYING HEAT SOURCE ON A ,NODE.

SIT TO IMPRESS A TIME VARYING HEAT SOURCE ON A NODE.

, ,., , , , ,, J

OIT TO IMPRESS THE SUM OF TWO TIME VARYING HEAT SOURCES ON A NODE.

DTV TO IMPRESS THE SUM OF A TIME VARYING SOURCE AND A TEMPERATURE VARYING SOURCE

ON A ,'CODE.

FIGURE 3-9: SUMMARY OF SOURCE DATA INPUT OPTIONS

3.3.5.2 Constant Source Options

Standard Option (3-blanks Card Code)

This option allows the user to impress a constant source on a

single node. The input format is as follows:

I

2

N#,Q _(basio format)

4,1.8,6,K3 $(ezample I)

NH = Actual node number of a node defined in the NODE DATA

B _oek (integer)

Q = The value of the source (floating point data value, or user

constant reference of the form: Kn, where n = oonetant

number of a floating point user constant)

Ex_enple I will cause a heat rate of 1.8 to be impressed on node number 4,

and the floating point heat rate stored in user constant number 3 to be

impressed on node number 6.

3-47



GEN Opti on

The GEN option allows the user to impress the same heat source

on a group of several nodes. The card format is as follows:

1

8 2

GEN N#,#N,IW°Q _(basic format)

GEN 6,3,1,4.3 _(example 2)

where: N_ = Actual node number of the first node to receive the source

(integer)

#N = The total numSer of nodes to receive this source (integer)

iN = The increment to be added to the current node number to

form the next node number (non-zero integer)

Q --_he value of the sou_,ce (floating point data value, or user

constant reference of the form: Kn, where n -- user constant
number)

_=_ple 2 will cause a heat rate of 4.3 to be impressed on nodes 6, 7, and 8.

The use of a floating point data value for the source value is discouraged

because the preprocessor will store the data value in core memory #N times.

However, a user constant will occupy one location but will be referenced

#N times, thus saving #N-l core memory locations.

3.3.5.3 Automated Variable Source Options

The automated options provide for operations which will automati-

cally evaluate the current value of a heat source which varies with time

or temperature (or both), and add this value to the appropriate source

location. All options cause the source to be evaluated by performing linear

interpolation on an array of values which represent points on a curve of

time or temperature vs heat rate. The values are input to the ARRAY DATA

block in the following doublet array format:

x],yl ,x2,y2,. ••,xn,yn

where: yi = Dependent variable - HEAT HATE

xi - Independent variable - TIM_ or TEMPERATURE

xi (i = 1,2,...,n) is strictly increasing with i.

xi,yi = Floating point numbers

3-48



f-

and are referenced in the SOURCE DATA block by using the integer-count

form: Am, where: m = array reference number.

For time-varying sources, the value of the independent variable

used for interpolation will be the mean time for the current computation

interval (control constant TIMEM). For temperature varying sources, the

value of the independent variable will be the current temperature of the

node receiving the source.

If the value of the independent variable is less than xl, then

yl will be used in lieu of performing an extrapolation. Similarly, if the

value is greater than xn, then yn will be used.

To provide further versatility, the value of the heat rate found

from interpolation will be multiplied by a factor before being entered in

the source table. This multiplying factor can assume any significance

which is convenient for the user.

If the multiplying factor has any units, the product of these

units and those of the dependent variable in the array must be units of

heat rate.

SlY Option

The SIV option allows the user to specify a temperature varying

source. The card format is as follows:

1

8 2

SlV N#,A,F _(basic format)

SIV 8,A4,1.0 8(example 3)

where: N# = Actual node number of the node which will receive this

source (integer)

A --Reference to doublet array of temperature vs heat rate, of

the form: An, where n = array number

F --Multiplying factor (floating point data value, or a reference

to a floating point user constant of the form Km, where
m = actual constant number)

3-49
i



The following discussion, and example 3 above, illustrates the use of the

SIV option:

Assume that the heat rate defined by the graph in Figure 3-I0 is

to be impressed on node number 8:

0.10

O.OS

0.0

O.O I0.0 _.0 30.0 40.0

TrI,t_ERATURE

FIGURE 3-I0: TEMPERATURE VARYING HEAT RATE

This graph can be represented by the following doublet array, which would

be entered in the ARRAY DATA block:

1

2

4,0.0,0.0,lO. 0,0. l ,20.0,0.05,30.0,0.05,40.0,0.0 ,END

The required heat source could then be defined by the card shown in

e._Z_ 3. Since the referenced array (array number 4) does not need to

be scaled or modified in any way, the multiplying factor is merely given

-as the floating point data value l.O.

SIT .Option

This option allows the user to apply a time varying source to a

node. The only difference between the SIT and SIV options is that the array

referenced with the SIT option must be a doublet array of time vs heat rate.

j-m

",.j

3-50
i



(

The card format is as follows:

1
8 2

SIT _#,A,F, _(b_ic format)

SIT 16,Ag,K13 _(exc_ple 4)

where: t_# = Actual node number of the node which will receive this

source (integer)

A - Reference to a doublet array of time vs heat rate,

of the form: An, where n = array number

- Multiplying factor (floating point data value, or a

reference to a floating point user constant of the

form: Kin, where m = actual conste_t number. )

Ex_/e 4 causes the result of interpolating on array number 9 (using the

mean time for the computation interval (TIME!d) as the independent variable)

times the value in user constant number 13 to be inserted in the source

location for node number,16 (Ql6).

i

DIT Option

The DIT option is used to specify a heat source which is the

sum of two, separate, time-varying sources. The user must supply a doublet

array of time vs heat rate and a multiplying factor for each of the two

sources, as foll ows :

I

B 2

DIT N#, AA, FA,AS, FB 8(bo_ic format)

DIT 3,AS,K2,A6,K4 $(exmTple 5).

where: N = Actual node number of the node which will receive this

source (integer)

AA, AB = References to doublet arrays of time vs heat rate for

source-A and source-B, respectively (integer count

form: An)

FA, FB = Multiplying factors to be applied to the result of

interpolating on arrays AA and AB, respectively

(floating poin_ data values, or references to float-

ing point user constants, of the form: Km)

3-51



E_m_Ze S defines a source to be impressed on node 3, which will be evaluated

by taking the sum of the interpolation result from array 5 times the value

of user constant 2, and the interpolation result from array 6 times the

value of user constant 4.

The DIT option may also be used to define a source which is the

sum of a constant source and one time-varying source. This is accomplished

by replacing the array reference for source-A or source-B (AA OR AB) with

a floating point data value or user constant reference. The value of the

constant source will then be the product of this value and its associated

multiplying factor. This feature of the DIT option gives rise to the

following alternate card formats.

where:

1
8 2

DIT NH, SUB, PA,AB, PB $(aZternate format I)

DIT N#,AA, PA, SUB, FB _(aZtern_te format 2)

SUB = Floating point data value, or user constant reference of

the form: Kin.

DTV Option

This option enables the user to specify a source which is the sum

of a time varying source and a temperature varying source. The DTV option

requires separate doublet arrays for time vs heat rate and temperature vs

heat rate, and represents the summation Q = f(t) + g(T). The card format

is as follows:

I

B 2

DTV N#,At, Ft,AT, FT _(b_sio format)

DTV 26 ,AI4,KI,AI6,K3 _(ezample 8)

"w._ -.

3-52



P_,i"

where: N_ = Actual node n'_nber of the node which will receive this

source (integer)

At --Reference to a doublet arr_ d of time vs heat rate (integer
count form: An, where n = array number)

Ft --Multiplying factor to be applied to the result of inter-

polation on array At (floating point data value or a user

constant reference of the form: Yvn, where m -- actual

constant number. Km must be a floating point value).

AT = Reference to a doublet array of temperature vs heat
rate (integer-count form: An)

= Multiplying factor to be applied to the result of inter-

polation on array AT (floating point data value, or a

reference to a _oating point user constant, of the form:
Km).

Exc_ple 6 defines a source, to be impressed on node 26, which will be

evaluated at each iteration, as the sum of a time varying component

(calculated from array 14 and user constant l) and a temperature varying

component (calculated from array 16 and constant 3).

The DTV option may be used to define a source which is the sum

of (1) a time varying source and a constant source, or (2) a constant

source and a temperature varying source. (Case l is equivalent in effect

to the alternate form for the DIT option, but is also made available to the

DTV option for the sake of consistency). Case 1 is accomplished by re-

placing the array reference AT with a floating point data value or user

constant reference. Case 2 is accomplished by replacing the array

reference At with a floating point data value or user constant reference.

In either case, the value of the constant source is taken as the product

of the data value, or referenced constant, and its associated multiplying

factor. The alternate card formats are as follows:

I

8 2

DTV N#jAt,Ft, SUB, FT _case I)

DTV N#J,SUB, Ft,AT, FT _(case 2)

SUB = Floating point data value, or user constant reference of
the form : Kin.

3-53



3.3.6 Conductor Data Block

3.3.6.1 Basic Conce_ts

Two basic types of conductors may be defined and input by the user:

(l) LINEAR, and (2) RADIATION. The conductance of a linear conductor is

input in units of

ENERGY

TIME "°F

and the heat flow rate through such a conductor is calculated in the network

solution routines as:

where :

= G • (Ti - Tj)

Q = Heat rate (ENERGY/TIME)
G = Conductance

T = Temperature

Several types of physical heat transfer mechanisms can be modeled

as linear conductors. For heat transfer by conduction, the conductance

should be computed as

k- A
G=

L

whe re : k = Thermal conductivity of the material (ENERGY/LENGTH-TIME-°F)

A = Cross-sectional area of the conduction path (LENGTH 2)

L = Length of the conduction path (LENGTH)

For heat transfer by convection, the conductance should be computed as

G=h.A

where : h = Convective film coefficient (ENERGY/LENGTH2-TIME-°F)

A = Surface area (LENGTH 2)

For heat transfer by mass flow, the conductance should be computed as

G=m-Cp

where: m = Mass flow rate (MASS/TIME)

Cp = Specific heat of the flowing material (ENERGY/MASS-°F)

©

3-54



The conductance of a radiation conductor is input in units of

ENERGY

• OR_

and the heat flow rate through such a conductor is calculated in the network

solution routines as:

Q- G • (Ti - Tj)

where: G = azFA ((Ti+460)+(Tj+460))((Ti+460)2+(Tj+460)2)

However, the value that is input as the conductance of a radiation conductor

should be computed as:

Ginpu t = ocFA

where: _ - S.tephan-Boltzman coDstant (ENERGY/LENGTH2-TIME-°R 4)

(e.g., 0.1714 x lO-° BTU/FT2-HR-°R 4)

¢ - Emissivity

F = Shape factor

A = Surface area (LENGTH 2)

The network solution routines automatically premultiply the input conductance

value by ((Ti+460)+(Tj+460))((Ti+460)2+(Tj+460)2) each time a radiation con-

ductor is processed so that all subsequent calculations may use the same

heat rate equation used for linear conductors. However, this premultipli-

cation utilizes scratch memory so that the input radiation conductance

value, ocFA, remains unaltered in the table of conductances.

Each conductor is assigned a reference number by the user. As

each conductor is accepted by the preprocessor, it is renumbered in ascending

sequence. The user assigned reference number is called the ACTUAL number,

and the preprocessor assigned sequence number is called the RELATIVE number.

These relative numbers serve as indices into the table of conductances which

is constructed from the conductor data cards, Although the subroutines re-

sulting from the translation of the operations blocks use the relative

numbering system, the preprocessor maintains a table of ACTUAL vs RELATIVE

conductor numbers, and performs the conversion from the former to the latter

whenever a conductance table reference is encountered. A conductance table

reference is always of the form:

Gn

where: n = Actual conductor number

3-55



The value so referenced is the current conductance (kA/L, hA, mCp, or acFA)

of the specified conductor. By making the actual numbering system available

outside the CONDUCTOR DATA block, the preprocessor relieves the user of the

burden of keeping track of the relative input order of the conductors. For

example, the conductance of actual conductor number 6 is referenced by G6,

regardless of its relative position within the conductance table.

All conductor input options require that the pair of nodes to

which a conductor is attached be specified by their actual node numbers.

The user should remember that the negative sign preceding boundary node

numbers on node data cards is NOT part of the actual node number. On

conductor data cards, negative signs prefixing node numbers are u_cd as

flags for specifying certain conductor options•

To facilitate the modeling of fluid loops, SINDA allows any con-

ductor to be specified as a ONE-WAY CONDUCTOR. One-way conductors permit

the realistic modeling of heat transfer by fluid (mass) flow, and their

conductances are always computed as mCp. Such a conductor is defined by

prefixing the node number of one of the adjoining nodes with a minus sign•

The node so designated* will not be allowed to lose or gain heat through

the conductor, even though the temperature of the node will be used to

calculate a heat flow. In other words, the solution subroutines will com-

pute the heat transferred through a one-way conductor as though it were an

ordinary conductor. This heat will not, however, be allowed to enter (or

leave) the node prefixed by the minus sign; it will be allowed to leave

(or enter) the unsigned node.

All conductor data cards are placed between the CONDUCTOR DATA

block header card and END card, as follows:

I

8 2

BCD 3CONDUCTOR DATA

conductor data cards

END

As many as 65535 conductors may be defined in a single problem.

*If fluid flows from node-A to node-B, then node-A (i.e., the upstre_ node)
should be flagged with the minus sign.

3-56

©



\

For all conductor input options, the following points apply:

I. Linear conductors must have a positive conductor number.

2. Radiation conductors must have a negative conductor
numbe r.

3. If a card code requires M data values for the definition

of a conductor (or a group of conductors) then the card

may contain N groups of M values (N = 1,2, ...) in lieu

of preparing N separate cards with M values on each

card. This rule is relaxed only for the '3 blanks' card
code, as described later.

4. ACTUN. conductor numbers may be as large as 6 digits
(e.g., 999999).

Figure 3-11 summarizes the conductor data input options available

to the user. It should be remeni_ered that the table of conductance values

is always available to the user in the operations blocks, and hence, a

"constant conductance value" from the standpoint of conductor data input

need not be held constant during the entire course of a problem's solution.

OPTION @ESCRIPTION
(COOE)

3 blanks TO INPUT A SINGLE CONDUCTOR WHERE THE CONDUCTANCE IS GIVEN AS A SINGLE, CONSTANT VALUE.

CAL TO INPUT A SINGLE CONDUCTOR WHERE THE CONDUCTANCE WILL BE CALCULATED BY THE PREPROCESSOR
FROM FOUR FACTORS INPUT BY THE USER.

GEN TO GENERATE AND INPUT A GROUP OF CONDUCTORS, EACH HAVING THE SAME CONDUCTANCE.

sir

SPV

TO INPUT A SINGLE CONDUCTOR WHERE THE CONDUCTANCE VARIES WITH TEMPERATURE. FOR SIV, THE
COND_ICI'ANCEIS FOUND BY INTERPOLATING ON AN ARRAY OF TEMPERATURE VS CONDUCTANCE. FOR
$PV, THE CONDUCTAQ_CE IS FOUND BY COPrPUTINGAN N-TH ORDER POLYNOMIAL FIJNCTIONOF TEMPERJ_TURE.

SIM

SPM

TO GENERATE AND INPUT A GROUP OF CONDUCTORS, EACH HAVING THE SAME TEMPERATURE VARYING

CONDUCTANCE. FOR SIM, G IS FOUND BY INTERPOLATING ON AN ARPJ&YOF T VS G. FOR SPM, G IS
FOUND BY COMPUTING A POLYNOMIAL IN T.

TO INPUT A SINGLE CONDUCTOR REPRESENTING A PATH THROUGH TWO MATERIALS WHICH HAVE DIFFERENT
TEMPERATURE VARYING CONDUCTANCE3. FOR DIV, G] AND G2 ARE TAKEN FROM ARRAYS OF T VS G.
FOR OPV, GI AND G2 ARE COMPUTED FROM POLYNOMIALS IN T.

TO GENERATE AND INPUT A GROUP OF CONDUCTORS, EACH REPRESENTING THE SAME PATH THROUGH TWO

_TERIALS WHICH HAVE DIFFERENT TEMPERATURE VARYING CONDUCTANCES. FOR DIM, Gl, AND G2
ARE TAKEN FROM ARRAYS OF T VS G. FOR OPM, G] AND G2 ARE COMPUTED FROM POLYNOMIALS IN T.

TO INPUT A SINGLE CONDUCTOR WHERE THE CONDUCTANCE IS A FUNCTION OF TIME AND TEMPERATURE.

THE CONDUCTANCE IS FOUND BY INTERPOLATING ON AN ARRAY OF TIME AND TEMPERATURE VS
CONOUCTANCE.

DIV

OPV

DIM

OPM

81V

FIGURE 3-11: SUMMARY OF CONDUCTOR DATA INPUT OPTIONS

iJ

3-57



3.3.6.2 Constant Conductance ODtions

,Standard Option (3 blanks card code)

The simplest conductor data card utilizes the blank card code and

is formatted as fol lows:

I

2

+

G_,NA,fiB,G $(bc_sio fo_nat )

-4,7,9,3.5£-] 3 #(ez_nple I)

18,31,8,1.8 _(e=ample 2)

G_ = Actual conductor number (integer)

NAjNB = Actual node numbers of the no'des to which this conductor

is connected (integer data value)

G = Conductance (floating point data value)

Example I defines conductor nu,ber 4 as a radiation conductor

connected between nodes 7 and 9 and having a conductance value of 3.5 x 10-13 .

Similarly, exoz_ple 2 defines conductor number 18 as a linear conductor con-

nected between nodes 31 and 8 and having a conductance value of 1.8.

Since a conductor has a single attribute, conductance, regardless

of its type, a single mathematical conductor may be used to represent any

number of physical conductors. In this way, all conductors having the same

conductance may be assigned to the same conductor number, as follows:

1

2

4,

'GII,NAI,NBI ,NA2,NB2, ... ,NAm,NBm, G
11,2,3,4,7,3.8

14,7,6,-9,8,2.1

_(alternate format)

_(@=omple 3)

_(e==_ple 4)

NAi,NBi (i = I,$,...,z) = ,ode numbers of adjoining node pairs
(integers.)

Example _ defines linear conductor number 11 as having a value of 3.8; it

is connected between nodes 2 and 3, and, also, between nodes 4 and 7. Even

though the conductor number for these two conductors is the same, no

physical connection between node (2 or 3) and node (4 or 7) has been

explicitly or implicitly established. Example 4 defines a linear conductor,

,

3-58
,



having a value of 2.1, connected between nodes 7 and 6, and connected as a

one-way conductor between nodes 9 and 8. In the latter case, heat will

flow from and to node 8, but will be prevented from entering or leaving node 9

(through this conduction path).

The inclusion of more than a single (NA, NB) node pair for a given

conductor is allowed only with the standard (3-blanks) conductor data input

opti on.

Since the total number of data values required to define a con-

ductor (using the alternate format) is variable, the general requirement

that each conductor be defined on a single card is relaxed to allow the

definition to be split across several cards*. In this manner, an unlimited

number of like-valued conductors may be modeled by one SlNDA conductor.

.CAL Option

The CAL option allows the user to input conductor data where the

conductance is specified as the product of three numbers, divided by a

fourth number. By using this option instead of the standard option, the

user is relieved of the burden of performing conductance calculations prior

to preparing conductor data input. The CAL option requires 7 data values

for each conductor, as follows:

where:

I

8 2

+ ¢

CAL G#,_ZA,NB, W,X,Y,Z _(basic format)

CAL 4,1,2,1.0,2.0,2.0,8.0 $(ex_npZe 6)

CAL -5,6,8,0.1,0.85,135.0,5.84E8 _(_:mrpZe S)

G# = Actual conductor number (integer)

NA, NB = Actual node numbers of the nodes to which this

conductor is connected (integer)

W,X,Y,Z : Floating point data values used to caZculate the

conductance, as follows: G = W*X*Y/Z

*CINDA-3G did not permit any NA, NB pair to be split across two cards.
restriction does not apply to SINDA.

This

3-59
i



The CAL option may be used to define both linear and radiation

conductors connected in the normal or one-way fashion. The user may select.

any physical meaning for the four data values, w, X, Y, and Z, which is

convenient.

Bxo_ple .5defines linear conductor number 4, having a value of

0.5, connected between nodes l and 2. Exomple 6 defines radiation conductor

number 5, having a value of (O'l)*(O.85)*('135.0)/(5.84xlOe), connected be-

tween nodes 6 and 8. In this example, the choice for W, X, Y, and % was ¢,

F, A, and I/q, respectively. In example 5 the choice was l.O, K, A, and L,

respectively.

GEN Opti on

The GEN option is used to generate and input a group of conductors

each having the sane conductance value. This option requires eight data

values for each group of similar conductors, as follows:

I

8 2

GEN 'G#, #G, IGjNA, INA, NB, INB, G _(basic format)

GEN -5,3,1 ,I0,I ,20,1,4.8E-12 _(exomple 7)

GEN 30,3,0,-40,I ,50,-I ,2.6 _(example 8)

where: G# = Actual number of the first conductor to be generated

(integer)

#G = Total number of conductors to be generated (integer)

_rG = Increment to be added to the current conductor number

to form the conductor number of the next conductor

(integer)

NA,NB = Actual node numbers of the pair of nodes connected

by the first conductor (integer)

INA, INB = Increments to be added to NA and NB, respectively,

to arrive at the node numbers for the pair of nodes

connected by the next conductor (integer)

G = Conductance of all conductors (floating point)

A negative sign preceding the G# causes all conductors to be de-

fined as radiation conductors. The negative sign, however, is never part of

the conductor number in the arithmetic sense. Therefore, the conductor

numbers generated in exc_ole ? would be 5, 6 and 7 (not -5, -4 and -3), and

all three would be radiation conductors. Similarly, a negative sign

C

C

3-60



f

preceding NA or _VBwould define the group of conductors as being of the

onc-way type. This negative sign, too, is never part of the node number

in the arithmetic sense. Therefore, the NA, NB node pairs generated in

example 8 would be (40, 50), (41, 49), and (42, 48). The increment values,

iG, .ZIVA,and /_B, may assume any integer value (positive, negative, or

zero)*. Excz_ple ? is equivalent to the following cards prepared under the

standard (3-blanks) option.

!

2

4.

-5,10,20,4.8E-12

-6 ,lI ,21,4.8E-12

-7,12,22,4.8E-l 2

Ecm_le a is equivalent to the following card, which uses the alternate

form of the standard (3-blanks) option:

I

2

4.

30 ,-40,50 ,-41,49 ,-42,48,2.6

The following alternate form of the GEN option permits the con-

ductance to be specified in a manner which is sinilar to that used for the

CAL option :

1

8 2

+ 4.

GEN C# ,#G,IG, NA, I"NA,NB, I"NB,W, X, Y, Z, _(alternate form)

GEN -5,3,1 ,lO,l ,20,1 ,l .0,4.8,1.0,l .E12 _(example 9)

Example 9, in effect, defines the sane conductors as example ?.

*When IG is zero, a single mathenatical conductor will be connected between

each generated NA, NB pair. The standard option, which permits several

NA, NB pairs to be specified for a single conductor, is the only other way
to create a multiply-defined conductor.

3-61



If space permits, more than one group of conductors may be de-

fined Gn a single GEN card. However, the basic and alternate formats may

not be used together on the same card.

3.3.6.3 Automated Variable Conductance Options

As stated earlier, the network solution routines call for the

execution of the operations in the VARIABLES 1 block prior to performing

each iteration on the heat transfer equations. Using this feature, the

user could effect a variable conductance by specifying VARIABLES 1 operations

which would insert a new conductance value in the conductance table. This

new conductance could be calculated using any convenient algorithn and in-

dependent variable. Though completely straightforward, this approach

tends to be rather cunbersome.

The automated options cause the current value of variable con-

ductors to be calculated wholly within the network solution routines just

following the VARIABLES 1 operations, and therefore relieve the user of

the task of preparing and inputting conductance computation algorithms.

As specified by the user, one of two standard methods is used to calculate

the current value of a variable conductor: (I) interpolation, and (2)

polynomial evaluation. For interpolation, the user must input, in the

ARRAY DATA block, an array of (temperature, conductance) ordered pairs re-

presenting points on the curve of T vs G. The conductance would then be

calculated by performing linear interpolation on this array using tempera-

ture as the independent variable. For polynomial evaluation, the user must

input an array of coefficients (PO,PI,P2...Pn) in the ARRAY DATA block. The

conductance would then be calculated by evaluating the n-th order polynomial

in T (i.e., PO+PI*T+P2*T**2+...+Pn*T**n). To provide further versatility,

the value of the temperature, T, used as the independent variable in both

of the above methods, may be taken as the average of the temperatures of

the two nodes to which the conductor is connected, or it may be set equal

to the temperature of only one of the nodes. This feature is explained

along with the options to which it applies.

To enable the same array of points or coefficients to be used for

all conductors passing through the same type of material, all.options cause

the computed conductance to be multiplied by a factor before being inserted

3-62

w,-,..

©

.._i,

u



pj,"_

in the conductance table. In this way, for example, the array can be used

to cQ_pu±e conductivity, k, and the multiplying factor can be used for A/L

in the case of linear conductors, or, smissivity, _, and oFA, respectively,

in the case of radiation conductors. In another application, themultiply-

ing factor could be used to scale the conductance to some set of consistent

u_its.

All of the automated options require a multiplying factor which

may be input as a floating point data value, or as a user constant of the

form: Kn, where n -- actual constant number. If the latter form is used, the

referenced constant must be a floating point value.

The interpolation options (except BIV*) require a doublet array

of temperature vs conductance. (Conductance is used loosely in this con-

text. The array could contain, for exanple, values of temperature vs con-

ductivity, as long as the associated multiplying factor had units of area/

length.) The array must contain an even number of floating point data

val ues, as fol lows :

TI,GI,T2,G2,. • . ,Tn,Gn

The t_perature values, Tj, must be strictly increasing with j. If the

value of the effective tenperature (average or single node) at sone time

is less than TI, then GI will be used in lieu of performing an extrapo-

lation; if the temperature is greater than rn, then Gn will be used.

The polynomial options require that a singlet array of co-

efficients be input in the ARRAY DATA block. The array must consist solely

of n+l floating point values, where n is the order of the polynomial. The

coefficients should be entered in the array in the order of increasing

powers of temperature (e.g., the first data value is the constant term,

PO, and the (n+1)th data value is the coefficient, Pn, of T**n).

For both classes of options, the arrays are referenced by using

the integer count form: An, where n : array number.

.p- *The BIV option requires a bivariate array of time and temperature vs
conductance.

3-63



SIV and SPV Options

These options allow the user to define single conductors having

temperature varying conductances. The SIV* option assumes the referenced

array contains points of T vs G and is to be used for interpolation,

whereas the SPV option assbmes that the array contains poiyncmial coefficients.

Both. options require five data values for each node, as follows:

1
8 2

,I. _,

SIV G#,NA, NB, A.P,F

SPV G#,NA,NB, AC, F

SIV -I 2,24,-25 ,A3,-O.O001

SPV 4,5,6,A2,Kll

SIV 4,5,6,A3,0.0001

_(basic format)
_(basio format)

_(ex_nple I0)

$(example II)

_(example 12)

where: G# = Actual conductor number (integer)

NA, NB = Actual node numbers of the pair of nodes to which the

conductor is connected (integer)

AP, AC - A reference to an array of points, or coefficients,

respectively, of the form: An, where: n = number of

array being referenced.

F --Multiplying factor, input a8 a positiue floating point

data value, or a user constant reference of the for_:
Kin,m = actual number of a user constcnt. The c_:stant

so referenced must hcJe been inpu_ as a floating point
data value in the CONSTANTS DATA b lock.

As for all other options, this type of conductor may be specified

as a one-way conductor by prefixing NA or NB with a minus sign.

Normally, the average temperature of the two adjoining nodes

(i.e., (TNA + TNB)/2) will be used as the independent value for interpola-

tion or polynomial evaluation. If the user wishes, instead, to use the

temperature of one of the nodes only, then this node is identified by placing

its number as the NA data value (not the NB value), and the single tempera-

ture option is indicated by prefixing the multiplying factor with a minus

sign. To avoid a misinterpretation of the contents of the multiplying

factor field, the single temperature option requires that the factor be

sq)plied as a floating point data value rather than a user constant reference.

Since the negative sign serves only as a flag, the multiplying factor will

©

©

*The SIV option in SINDA is the sane as the CGS option in CINDA-3G. 0

3-64



always be interpreted as a positive quantity. Example 10 illustrates the

correct input for a radiation conductor connected between nodes 24 and 25

but conducting no heat to or from node 25, wherein the tenperature of node 24

will be used as the independent variable for interpolating on the T vs G

points supplied in array number 3, with the result of the interpolation being

multiplied by O.O001 (NOT - O.O001!) prior to insertion into the conductance

table. The exanple above encompasses all three methods for using minus

signs as flags to establish conductor definition and evaluation options*.

Example8 11 and 12 are discussed in detail in the following

paragraphs :

Consider the thermal network shown in Figure 3-12.

N$ - S "

T T
NI-5

FIGURE 3-12: THERMAL NETWORK

L _-

\.

The conductance of the conductor is defined by the following equation:

G = (O.O00l) (O.O05T 2 + l.O)

where: T = average temperature of adjoining nodes.

Example 11 illustrates the correct method of defining this conductor using

the SPV option. The required coefficients of the polynomial would be

entered in the ARRAY DATA block with the following card:

1
2

2,1.0,0.0,0.005 ,END

I ooeffi_ient P2

coefficient PI

coefficient PO

array number

*The sample conductor is quite unrealistic, but it does serve to illustrate

several points.

3-65
J



The required multiplying factor would be entered in the CONSTANTS DATA

block with the following card:

1

2

+

II:0.0001

I ÷ value (of multiplying factor)
oonstant number

An alternate method of defining this conductor is illustrated in

Emile 12. This example uses the SlV option and thus requires an array

of T vs G points for interpolation. The array is developed by approximating

the T vs G curve with a series of straight lines as shown in Figure 3-13.

' • I_ CUA_

• P|[rr-w|S[ ,tZ/4[AR A_opRoXIMATION

0.00'10 -,-

0.000S m

0.0_0

.0,0.0009)

1j_' (2o.o.o.ooo,1

(0.0..,._00015)

I i I I I
0.0 10.0 ZO.O 30.0 40.0 SO.O

FIGURE 3-13:

TI[MPEAATU_

STRAIGHT LINE APPROXIMATION OF TEMPERATURE

VS CONDUCTANCE CURVE

The points which define this approximation are entered in the ARRAY DATA

block as follows:

3-66



_

!
\ ,

1
2

+

3,0.0,1.0,10.0,1.5,20.0,3.0,40.0,9.0 ,END

ii - TI Tn

array number

The multiplying factor is supplied directly on the conductor data card as

the floating point data value, O.O001, although a user constant reference,

such as Kll, could have been used instead.

SIM and SPM nptions

These two options combine the features of the SIV and SPV options

with those of the GEN option. That is, they allow the user to generate and

input a group of conductors all having the same temperature varying con-

ductance. The SIM option generates conductors whose conductance will be

evaluated by interpolation, and the SPM option generates conductors whose

capacitance will be evaluated from a po]ynominal. Nine data values are

required to define each group of conductors, as follows:

1
8 2

SIM G#,#G,IG, NA,17_A,NB,INB,A._,F

SPM G#,#Gj IG, NA, INA, NB jINB ,ACj E

SIM lO ,3,1,5 ,1,6 ,1,A3,KII

NA, NB

AP, AC

where:

_(basic format)

_(basic format)

_(exomple I_)

F

G# = Actual conductor number of first conductor to be

generated (int4ger)

_G = Total number of conductors to be generated (integer)

IG = Increment to be added to the current conductor number

to form the conductor number of the next conductor to

be generated (non-zero integer)

= Actual node numbers of the pair of nodes to which the

first conductor is connected (integer)

INA, INB = Increments to be added to NA and NB, respectively, to

form the node numbers for the pair of nodes connected

by the next conductor (integer)

= A reference to an array of T vs G points, or polynomial

coefficients, r_spectivelyj of the form: An, where:

n = array number of the required array

= Multiplying factor input as a floating point data

value, or a user constant reference of the form:

Ka, where m = constant number of a floating point
constant

3-67
f



The use of a floating point data value for the multiplying factor is dis-

couraged because the preprocessor will store the data value in core memory

#G times. However, a user constant will occupy one location but will be

referenced #G times, thus saving #G-l core memory locations. The conductors

defined by Ezcmple 13 are equivalent to those defined by the following:

1

8 2

SIV lO,5,6,A3,Kll

SIV ll,6,7,A3,Kll

SIV 12,7,8,A3,Kll

As for all other options, a negative sign prefixing the G# estab-

lishes the entire group as radiation conductors; a negative sign prefixing

NA or NB defines a group of one-way conductors: a negative sign preceding

(where F is input as a data value, not a user constant reference) establishes

TNA as the value of the independent variable to be used for interpolation

or polyncmial evaluation. Clearly, the negative signs, if any, preceding

G#j _A, NB, or _ have no arithnetic significance. However, negative signs

preceding IG, /]VA, or /IVB serve to input negative arithmetic values. IG

must be non-zero because multiply-defined conductors are permitted only with

the standard (3-blanks) and GEN options.

DIV and DPV Options

These options allow the user to define a conductor which passes

through two materials, each having a different temperature varying conductance.

The DIV* option uses the interpolation method to evaluate the conductances,

whereas the DPM option uses a polynomial. Both options permit one material

to have a constant conductance. Both options require seven data values for

each conductor, as follows:

_,°

*The DIV option in SINDA is the same as the CGD option

3-68

in CINDA-3G.



where:

1
8 2

DIV G# ,NA,NB, APA, FA, APB, FB

DPV G#, NA, NBjACA, FA, ACB, FB

DPV I0,20,30 ,A8 ,K9 ,AI4,0.03

$(basic form.at)

_(basic format)

_(example 14)

G# = Actual conductor number (integer)

NA, NB = Actual numbers of the pair of nodes to which the

conductor is connected (integer)

APA, APB = References to arrays of T vs G points of the form:

An, where: n = array number

ACA, ACB = References to arrays of polynomial coefficients, of

the form: An

FA,FB = Multiplying factors input as _oating point data

values, or as user constant references of the form:

Kin,where m = user constant number of a floating

point data value

Using interpolation (or polyn_ial evaluation) as the calculation scheme,

the first conductance, GA, is computed by using the temperature of node NA

as the independent variable for operating on array A_PA (or ACA) with the

result mu|tiplied by FA. In similar fashion, the temperatuTe of node NB,

array APB (or ACB} and factor FB are used to compute the second conductance,

GB. These two conductances are then combined to form the total conductance,

GT, which is entered in the conductance table. The combination algorith_

depends on the type of the conductor, as follows:

L+L
GA GB

(series conduction)Linear: GT =

Radiation:* GT = GA*GB

If one of the two materials does not have a temperature varying

conductance, this material may be identified by replacing its corresponding

array reference with a floating point data value or a user constant reference.

The constant conductance of this material will then be the product of this

data value or constant and its associated multiplying factor. This conductance

f-
t
_.- *This option should be used with caution to avoid the calculation of an

effective radiation conductance of oocI_2FIF2AIA2.

3-69



is combined with the variable conductance to form GT. as described above.

For conpleteness, all possible alternate formats are listed, as follows:

!

8 2

DIV G_,NA,NB, SUBjFA,APB,FB _(GA = SUB'_FA)

DPV G#,;JA,NB,SUB,PA,ACB, FB _(GA = SUB_FA)

DIV G#,NA, NB, APA, FA,SUB,FB _(GB = SUB_FB)

DPV G#,N.4,NB,ACA,FA,SUB, FB _(GB = SUB_FB)

DPV 80,90,gl ,4.0,3.0,A6,K14 _ example 1E

where: SUB = floating point data value or user constant reference of

the form: Km

In example 14, the tsnperature of node 20 will be used with array

8 and constant 9 to compute GA, and the temperature of node 30 will be used

with array 14 and the value 0.03 to ca, pute GB. The total conductance, GT,

will be entered for conductor number lO. In example 15, the value of GA

will be computed as 12.0 (= 4.0*3.0), and the value of GB will be deter-

mined from Tgl, A6, and Kl4.

DIM and DPM Options

These two options combine the features of the DIV and DPV options

with those of the GEN option. They are used to generate and input a group

of conductors all made of the same two materials having different tempera-

ture varying conductances. The DIM option causes the conductances for the

two materials to be evaluated by interpolating on the referenced arrays,

and the DPM option csnputes the conductances from polynomial coefficients

supplied in the arrays. As for the other variable conductance options,

multiplying factors are applied to the results of the operations on the

arrays. Eleven data values are required to define each group of con-

ductors, as follows:

I

8 2

+ +

DIM G#, #GjIGjNA, INA,NB,INB, APA, FA,APB, FB

DPM G#,#G,IG ,NA,INA, NB ,I?JB,ACA ,FA,ACB ,EB

DIM ]0,3,2,20,l ,30,-I ,AI2,K3,AI3,K4

where: G#

#G

IG

_(basic foz_nat)

_(basic format)

_(example le)

--Actual conductor number of the first conductor to be

generated (integer)

= Total number of conductors to be generated (integer)

= Increment to be added to the current conductor nz_nber

to form the conductor number of the next conductor

(non-zero integer)

3-70
i



NA, NB = Actual node numbers of the per:r of nodes to which the

first conductor i8 connected (integer)

INA, INB = Increments to be added to NA and NB, respectively, tc
•form the NA, NB pair associated with the next conductor

(integer)

APA, APB = References to arrays of T vs G points, of the form:

An, where n = number of the array being referenced.

ACA,ACB = References to arrays of polynomial coefficients, of the
form:

FA,FB = Multiplying factors input as floating point data values,

or as user constant references of the form: Kin,where

m = actual constant number of a floating point value

The use of a floating point data value for the multiplying factor is dis-

couraged because the preprocessor will store the data value in core memory

#G times. However, a user constant will occupy one location but will be

referenced #G times, thus saving #G-l core memory locations.

Negative signs preceding GH, NA, or NB serve as flags to establish

the type of the conductors, in accordance with the usual conventions. Nega-

tive signs preceding IG, ZNA, or /NB, however, indicate that the data value

is, indeed, a negative arithmetic quantity. Since the conductance of each

conductor is dependent on the specific nodes to which it is connected, the

XG value may not be zero (i.e., multiply-defined conductors are not allowed).

Since the DIM and DPM options are equivalent, in effect, to a

series of conductors defined using the DIV or DPV options, the rules for

evaluating the conductance of each conductor generated under the former

pair of options are the same as those described in the section covering the

latter pair of options.

For either option, one of the two materials may be defined as

having a constant conductance by replacing the array reference for the

material with a floating point data value or user constant reference. This

feature makes the following alternate formats acceptable to the preprocessor.

I

8 2

whe re:

DIM G#,/fG,IG ,NA,INA, NB ,INB ,SUB, FA,APB, FB

DIM G# ,#G,IG, NA, INA,NB, INB ,APA,FA, SUB ,FB

DPM G# ,#G, IG, NA, INA,NB, INB ,SUB,FA, ACB ,FB

DPM G#, #G, IG, NA, INA, NB, INB,ACA,FA, SUB, FB

SUB = floating point data value or user constant reference of
the form: Km

3-71



The conductors defined in excmTple lS are equivalent to those

which are defined by the following:

1
8 2

4. +

DIV lO ,20,30 ,AI2 ,K3 ,AI3 ,K4

DIV 12,21,29 ,Al2,K3 ,Al3 ,K4

DIV 14,22,28,AI2,K3,AI3,K4

BIy.Option

conductance which is a function of both time and temperature.

mat for such a conductor is similar to that for the SIV option

five data values for each conductor, as follows:

The BIV option enables the user to define a conductor having a

The card for-

and requires

1
8 2

B!V G#, NA, NB, b°B, F

BIV 19,8,11 ,A43,K28

¢(basic format)

_(example 1?)

where: G# = Actual conductor n_b_r (integer)

NA,NB = Actual node numSers of the pair of nodes to which this

oonductor is connected (integer)

APB = Reference to a bivariate array (of temperature and time

US conductance points) of the form: An, where

n --array number

F = Multiplying factor input as a floating point data value

or a user constant reference of the form Kin,where

m = constant number of a floating point user constant

The temperature value used is the average value of the temperatures of the

two nodes (NA, NB)to which the conductor is connected*. The time value

used is the mean time for the computation interval (control constant TIMEM).

©

*The negative flag on F, as used with the SIV, SPV, SIM, and SPM options,

is not permitted with the BIV option.

3-72
p



C

Section 3.3.3.3 describes the structure of a bivariate array. In this ap-

plication, the X independent variable should be temperature, the Y indepen-

dent variable should be time, and the Z dependent variable should be

cendu ctance.

E._Ze 17 defines conductor 19, connected between nodes 8 and II.

Array 43 has a bivariate structure, and constant 28 contains a floating

point value.

3.4 OPERATIONS BLOCKS

3.4.1 Introduction

An operations block is a group of cards, preceded by a block

header card and followed by an END card, which specifies a sequence of

operations to be performed on the data previously input in the five SINDA

data blocks. The general form of an operations block is as follows:

1

8 2

BCD 3name-_f -b look
operation-1
operation-2

END

where: n_e-of -bZock . EXECUTION
VARIABLES l
VARIABLES 2
OUTPUT CALLS

Each block is translated by the preprocssor into a corresponding FORTRAN

subroutine, which in turn, is translated by the system FORTRAN compiler

into machine executable code. Thus, an operations block prepared by the

user becomes a program executable by the computer. To facilitate the dis-

cussion in the following sections, the name of each subroutine and its

corresponding operati_s block name is shown below:

Operations Blook N_ne

EXECUTION

VARIABLES l

VARIABLES 2

OUTPUT CALLS

FO_RAN Subroutine No_.e

EXECTN

VARBLI

VARBL2

OUTCAL

3-73



Three basic types of operations may be included in an operations

block, as follows:

1. SINDA statements

2. F-type FORTRAN statements

3. M-type FORTRAN statements

A SINDA statement is a simplified form of a subroutine call which dispenses

with unnecessary key words and permits arguments to be specified using

reference forms keyed to the actual numbering system developed in the data

blocks. An F-type statement is any valid FORTRAN statement. A M-type

statement is similar to an F-type statement, except that the actual number-

ing system may be used to reference data. That is, F-type statements are

_FORTRAN statements which are not translated by the preprocessor, whereas

M-type statements are FORTRAN statements which are Modified by the pre-

processor to reflect the same translation from the actual to the relative

numbering system that is applied to SINDA statements. Each of the three

types of statements is illustrated below:

SINDA STATEMENT:

F-type FORTRAN STATEMENT:

M-type FORTRAN STATEMENT:

STFSEP (A9+2 ,T3,Gl8,K4 ,A7 ,Ql0)

CALL STFSEP(A(84),T(46),G(6),K(27) ,A(61 ),Q(32 ))

T(46)-G(6)

CALL STFS EP (A(9+2 ),T3, Gl8, K4 ,A7,Ql0)

T3=GI 8

0

The following discussion of the four SINDA operations blocks re-

quires the introduction of several concepts which may be foreign to the

prospective user who is not familiar with computer programming techniques.

This situation arises because these blocks are the vehicle through which

the user specifies the sequence of operations (mathematical and otherwise)

to be performed by the computer in order to solve the user's problem, and,

as such, they constitute a "computer program." Just as the data blocks

are used to tell the plug-and-grind computer WHAT to plug, the operations

b]ocks are used to tell it HOW to grind.

3-74



i -

A general understanding of three key concepts is necessary in

orEer to take full advantage of the versatility of the SINDA system. These

concepts are:

I. Flow chart development

2. Subroutine usage

3. Program flow control

These concepts will not be discussed explicitly but they will serve to

unify the discussion in the following sections. In other words, the dis-

cussion will show, by examples, how these concepts relate to the functional

and operational aspects of the SINDA operations blocks.

A functional description of the operations blocks will be given

in Section 3.4.2, and application guidelines will be presented in Section 3.4.3.

The operational details of actually preparing SINDA operations cards will be

deferred until Section 3.4.4.

3.4.2 Functional Description*

After the preprocessor has processed the data blocks and trans-

lated the operations blocks, the compressed data is placed on a magnetic

tape (thus releasing core memory for other uses) and the resulting sub-

routines are passed to the system FORTRAN compiler. Following compilation,

the resulting program is loaded into core and executed as shown in the flow

chart in Figure 3-14.

\

*At this point, the user should be certain that he understands what a

"subroutine" is. If this is not clear, it will become a conceptual stumbling

block which will prevent a thorough grasp of the discussion which follows.

A useful supplementary discussion of subroutines may be found in Reference 8.

3-75



FIGURE 3-14: BASIC PROGRAM FLOW

This simple flow chart reveals and Implies several things:

l • The actions depicted in the flow chart take place within
the framework of a "main program." Since this "main program"
is fabricated entirely by the preprocessor, the actions
therein occur automaticall.yfrom the standpoint of the user
(i.e., the user has no control over these actions).

o The first action performed automatically is the reading of
the processed data from the magnetic tape back into core
memory.

3. The next and final action which is performed automatically
is a transfer of control to SUBROUTINE EXECTN.

o Clearly, the first opportunity for the user to specify
operations which will lead to the solution of his problem
occurs in the EXECUTION block. That is, if the user includes
no operations in his EXECUTION block, then subroutine EXECTN
will be empty (i.e., it will indicate that nothing is to be
performed) and, for all intents and purposes, his program
will do nothing. Conversely, exactly and only those operations
included by the user in his EXECUTION block will appear and
will be performed in subroutine EXECTN when it is called.

S. The basic flow chart includes no explicit reference to sub-
routine VARBLI, VARBL2, or OUTCAL.

6. The basic flow chart applies to both THERMAL and GENERAL type
problems.

3-76

_2

_-s_J



I-) No general flow chart of the EXECUTION block (and, hence, sub-

routine EXECTN) can be presented here because everything in the block must

be placed there by the user and the sequence of operations will always be

specific to a particular problem. However, the flow chart for a typical

EXECUTION block is shown, for illustrative purposes, in Figure 3-15.

,r IItCUTI_ _'_

m I _ •

C.ILLA SUIRQUTIN£ WHICMINTERPOI.AT_$_q
AIIUY AS TO FINO C_O(,'CTANC[ G7. USING
'[W( YA&.U[ OF ItT(ST _ 1"_( [IOTP(_O(NT
WLqlML[.

e.g. OI_61(IT_T,AS oGT)

\

CALLA SUiRQUTIN( WNICN P(,_ T_LI_SIENT
T_(II_ _YSlS ON TH( _(TVOK O(FINEO
IN TM( _ JAO ¢ONCUCTOIDATA iLOC[5.

e.g. CNFIlWO

;i

i iii _ i

e.l. P_ mOO(S IX Tw( m(l_, i

(- )

FIGURE 3-15: SAMPLE FLOW CHART FOR THE EXECUTION BLOCK

3-77
i



The last line in each block of this flow chart shows the SINDA operation

which will accon_)lish the action described there in words. The various

subroutines referenced by name (i.e., DIDEGI, STFSEP, _FRWD, and PRNTMP)

exist in pre-written, "canned" form in the SINDA library, and are described

in d'etail in Section 6.

It will be noticed that this flow chart still makes no explicit

mention of subroutines VARBLI, VARBL2, or OUTCAL. This situation will be

true, in general, for any EXECUTION block flow chart prepared by the user,

because these subroutines are called automatically from within the pre-

written network solution subroutines (e.g., _FRWD); they are not, in

general, called directly by the user. In other words, EXECTN, as directed

by the user, calls C_FRWD; CNFRWD, at certain points in the sequence of

heat transfer calculations, calls VARBLI, VARBL 2 and OUTCAL; each of these

routines in turn, again as directed by the user, calls upon various library

subroutines to perform operations which are unique to the problem at hand.

Thus, the operations included in the VARIABLES l, VARIABLES 2, and OUTPUT

CALLS blocks are used to "customize" the pre-written, "canned" network

solution routines so that they can accommodate any and all of the peculiari-

ties which are specific to a given user's problem. Figure 3-16 will aid

the user in visualizing that which has just been described - namely, that

the operations entered, by the user, in the VARIABLES l, VARIABLES 2, and

OUTPUT CALLS blocks serve as "customized additives" to the pre-written

operations contained in the various thermal network solution subroutines

(of which, the most commonly used is subroutine C_IFRWD).
\

k

3-78



(,_

,+

Mill I
I

n

jl iTI41S IIJIICUTIM llll_0S TI_ N0¢!$_ n rIITA IL0¢I[S IMT0 COII N[II_t.

tllllOITt MI ItII[CTII

i i ii i

I _ +MIU lOllS IflllqN rots t_lliOi't]ll! IIHKIia? OI_UI+T_tlS hin104 Will SI_C|F]|O II _ U$1I
In m+: [XtCtJtlOm a_LOCatO_ Wl$ S[_ lm_U? OtC_t.

TNI| IOI IIPIIIINTI Tar VAllOI5 ILEHIMTAmV OffUTIOtl. IU04 A3 INflRPOLITIOa. AOOITION. E?C..
_104 l_[ UIII 1115141_11[ |_LUO[O LN IWi[ ttlOltlOI ILOCl PlIOI t_ II_dlSTtl_ _ _UTI_ llOt,'r;|_.

i i in

i II i
i

I l_|$ IJMOUTIII NIf01_ tlUmSt[nt '_41114_. _._$L$ all _41 II?_IUIIOUTIM ¢l;IMO

I OIFIIIO In T_i lOCI #JIO ¢O_OUCTOI 0_?+ IL_¢II.

', !" ' !UII0_IN VMI_.I _l*lS _UIIIO_IM ¢011TAItlS _ 0ffl_Tt01_

S_¢l;ItO IY _ U_(II f! Tt( VAIIIAIL[_t |
ILOCK OF WlS Sla_A ImPuf O_CX.

III l iii

I ?Nil 10l l(Plll[aT$ Till lULl OF TW( Imll_4llI??lll(JLCULITIOMI i41T_IIIP._IMO W_ICH All |

I
MOIJIIII0 TO ImYlllJIt[ _ [O,kITIG'_.SOF WIly TPJJIIFII, I

i i

, i i m

I '_Jli0U?INI +idill.l TWIS 14_ll_QlXTll(_JtlN$ TW! 0eleJtl0_ i

l VICIIrlIO IV TWI U$11 IS0_l VUlM_[I I

l

IILOII Of WIS SIIGI INPUT OlCI.

l i

I IUIIIOUTIIII01ITTAL ,'Nil IUIIOUTIlll {0111'AIIII_ Olll_tlltlOlll l

, J I_!¢1;110 IV I_[ _lll I! Tkl OU?PU? CALLS

I

!ll.Or.IIOF WII Sl_0_ tll_l 0(¢I[+

I iii

iii

I IIIIIO1 fNl I/Sill ;qGl_f_I_I IlICLUIIIIIN fill(IIICUTI011KOCll llrt(l IIIQUISTIIIIA _UTI01 fill/TIll.

I I II I

FIGURE 3-16: NESTED STRUCTURE OF THE OPERATIONS BLOCKS

.,I

3-79



The flow chart in Figure 3-17 details the sequence of operations

contained in a typical network solution routine, CNFRWD. The flow charts

for the other solution routines available in the SINDA library are similar

to the one shown here. Careful examination of this flow chart will reveal

the extensive versatility which may be built into the solution routin_es

through the creative use of the VARIABLES l, VARIABLES 2, and OUTPUT CALLS

blocks. The VARIABLES 1 block allows the user to interject operations which

will be performed after the time step for each iteration is computed, but

before the actual heat transfer equations are integrated. The VARIABLES 2

block allows the user to interject operations which will be performed after

the equations are integrated, and the OUTPUT CALLS block allows the user to

interject operations which will be performed only when the problem time has

progressed to a multiple of some specified interval.

The flow chart also reveals how the SINDA CONTROL CONSTANTS can be

used to achieve program flow control within the network solution routines.

For example, the check on control constant BACKUP is built into subroutine

CNFRWD. However, since control constants are accessible from all the

operations blocks, the user could, for example, set the value of BACKUP

equal to l.O in his VARIABLES 2 block, and thus cause _FRWD to automatically

erase the previous iteration. Control constant OUTPUT is used to specify

the time interval at which subroutine OUTCAL will be performed. Other con-

trol constants provide checks on the time step used, the maximum temperature

change calculated, etc., however, a detailed discussion of these various

control constants will be deferred until Section 4.6. Suffice it to say

that by examining and modifying these constants in the VARIABLES l,

VARIABLES 2, and OUTPUT CALLS blocks, the user is able to effect complete

control over the flow of the network solution routines, in addition to

interjecting his own operations into the pre-written sequence of calculations

contained therein.

_U

_t..J

\

" _._ _'_-r---_.. -_:F- ; '_;'. -_.

3-80

i

v"



• ° • •
++

¢N.CIA.AT[ 3141[TIN[ STEP TO l( L_EO
FOIl TlCIS ITI[UTICN

CALL SUBIIOUTINt VMSLI

[JlASE 11111 ITEUTZCN

NOOIFY '114( TIME STEP
SELECTION C_[TERIA

\.
FIGURE 3-17: FLOW CHART OF NETWORK SOLUTION

SUBROUTINE CNFRWD

3-81

i



_e sample flow chart for the EXECUTION block (Figure 3-15)

zepresents the result of applying the three basic concepts (i.e., flow

_hart development, subroutine usage, and program flow control) to a

.¢peclfic problem. These concepts are equally applicable to the VARIABLES l,

VARIABLES 2, and OUTPUT CALLS blocks. The structure of the flow chart in-

dicates the exact sequence of operations which the user has established as

being necessary for the solution of his problem. The discrete operations

detailed in each box are mechanized through the usage of pre-written sub-

routines from the SINDA library, and the FORTRAN "IF" statement (in the

diamond) is used to accomplish program flow control (i.e., the selection

of alternate sequences of operations based on certain values and criteria).

These three concepts must be applied by the user to each individual problem

which he desires to solve. Various guidelines for structuring the flow of

an operations block will be presented in Section 3.4.3, but the user must

exercise a certain degree of judgement in applying them to his problem. In

addition, the user should recognize that the SINDA system provides him with

the capability and freedom to innovate in those cases where general guide-

lines cannot be applied. Similarly, the actions and generalized calling

sequences* of the subroutines in the SINDA library will be given in

Section 6, but it is up to the user to select the routines which are ap-

propriate for his problem, as well as to supply them withappropriate

actual arguments. And in the same fashion, Section 4.3 will describe the

available methods for achieving program flow control, but the responsibility

for selecting and correctly applying these methods rests with the user.

3.4.3 Applications Guidelines

3.4.3.1 EXECUTION Block

In developing the EXECUTION block for a THERMAL problem, it will

be convenient to partition the sequence of operations into two segments.

One segment will consist of those operations performed prior to calling a

network solution routine, and the other segment will consist of those

operations performed after calling a solution routine. In this way, the

\

*For example, the generalized calling sequence for subroutine DIDEGI is:

DIDEGI (independent-variable, arr_j (inCeger-oount-form) , dependent-variable)

3-82



FTM

,f.-
!

former segment will contain everything necessary to set up and initialize

a problem to be solved, and the latter segment will contain everything

necessary to wrap up and summarize a problem which has been solved.

The following operations are among those which would be appro-

priate for inclusion in the pre-solution segment of the EXECUTION block:

I. Compute scale factors and other constant values which were

inconvenient to compute by hand.

2. Scale data to consistent units.

3. Initialize required control censtants if this was not done
in the CONSTANTS DATA block.

4. Rewind and initialize any files to be used during the run.

5. Specify dynamic storage requirements.

In performing such set-up and initialization opo.rations, the user should

recognize that, while all memory locations established by the data blocks

(i.e., temperature locations, conductance locations, source locations,

etc.) are accessible to him in the operations blocks, not all of these

locations contain meaningful values prior to calling a network solution

routine. The following list describes the status of all accessible memory

locations upon entering subroutine EXECTN:

I. All temperature locations contain the "initial temperature"

of their corresponding node, as defined on the NODE DATA cards.

2. Capacitance locations corresponding to nodes which were de-

fined using the standard (3-blanks), CAL, or GEN options con-

tain the capacitance values defined on the input cards.

3. Capacitance locations corresponding to nodes defined by the

automated, variable capacitance options (SIV, DIV, etc.)

contain no meaningful values. These locations will be auto-

matically loaded with the current capacitance of their

respective nodes (as computed according to the options

specified in the NODE DATA block) during each iteration of

the heat transfer equations, and hence, they contain mean-

ingful values only after a network solution routine has been
entered.

4. Source locations contain no meaningful values for reasons

similar to those given in Item 3.

5. Conductance locations corresponding to conductors which were

defined with the standard (3-blanks), CAL, or GEN options

contain the conductance values specified on the input cards.

3-83



6. Conductance locations corresoondtng to conductors defined by
the automated varlable conductance optiGns (SIV, DIV, etc.),
contain no meaningful values for reasons similar to those
given in Item 3.

7. All user constants locations contain the values assigned in
the CONSTANTS DATA block.

8. CONTROL CONSTANTS mentioned in the CONSTANTS DATA block con-

tain the values assigned therein; a]l others contain zero.

g. All array locations contain the values assigned in the ARRAY

DATA block (locations reserved with the SPACE option contain
zeroes).

While it is impossible to directly scale the value of a parameter which

falls in the category of Item 3 or 6, above, these parameters may be altered

indirectly by modifying the value of their associated multiplying factors.

This approach may be effected only if the multiplying factors are input

as user constant references (instead of floating point data values).

Similarly, a heat source (Q-location) may not be scaled directly, but if

it is defined in the SOURCE DATA block, it may be altered by modifying the

user constant given as the multiplying factor (for the automated, variable

source options) or the heat source value (for the standard and GEN options),

For all problems, dynamic storage requirements must be specified

at the beginning of the EXECUTION block. The subject of dynamic storage is

discussed in Section 4.2.

An operational description of each of the network solution routines

is given in Section 6.2 of this manual, and the functional aspects, mathe-

matical development, and theoretical foundation for each routine are dis-

cussed in Reference 5. The selection of an appropriate network solution

routine is based on many criteria, and a complete discussion of the peculiari-

ties, advantages, and disadvantages of each available routine is beyond the

scope of this manual. However, for most problems encountered by the neophyte

user, subroutine CNFRWD will suffice for transient analysis, and subroutine

CINDSS will suffice for steady state analysis.

"J

3-84



The following operations are among those which would be appro-

priate for inclusion in the post-solution segment of the EXECUTION block:

I. Perform sumary calculations

2. Print final values of interest

3. Call for plots of data accumulated during the solution of
the network

4. Punch, or write to a file, any values which might be needed

for later computer runs

When a network solution routine has finished its calculations, it returns

to the next operation in sequence in the EXECUTION block. At this point,

all data locations (temperatures, capacitances, control constants, etc.)

contain the current values of their respective parameters. It should be

noted, however, that the heat source locations will contain the last NET*

heat rates (not just the impressed rates) into their respective nodes.

3.4.3.2 VARIABLES l Block

The following operations are among those which would be appro-

priate for inclusion in the VARIABLES l block:

I. Compute the current values of time/or temperature varying

quantities (i.e., capacitances, conductances, boundary

temperatures, etc,).

2. Compute and enter heat rates into the source (Q) locations.

3. Examine the time step selected for the current iteration.

4. Save pre-iteration temperatures for comparison with post-

iteration temperatures in the VARIABLES 2 block.

5. Modify control constants relevant to the network solution

routine in progress.

Upon entering subroutine VARBLI, the network solution routines

will have computed the time step for the next iteration and will have

zeroed out all heat source (Q) locations. The routines will not, as yet,

have evaluated the current value of the capacitances, sources, and con-

ductances defined, in the data blocks, with the automated variable capaci-

tance, source, and conductance options. These elements will be evaluated

after the user's VARIABLES l operations have been performed. This situation

*The calculation of NET heat rates is performed by the solution routines.

3-85

i



• /

is unique to the present version of the SINOA system. In previous versions,

the variable elements were eva1_ated before calling VARBLI, thus giving the

user an opportunity (in VARBLI) to examine the current values of these

elements before each iteration. However, in the present system, variable

capa'citances, sources, and conductances are evaluated after the call to

VARBLI. Thus, if a user wishes to modify the current value of an automated

variable element before proceeding with the integration of the heat transfer

equations, then he can do so only by altering the value of the multiplying

factor associated with this element. And, furthermore, this multiplying

factor will be accessible to the user only if it was specified, in the data

blocks, as a user constant, not a floating point data value. For example,

suppose that the user wishes to increase the capacitance of node 6 by I0%

before proceeding with the current iteration. Further suppose that this

capacitance varies with temperature and was defined, in the NODE DATA

block, as follows:

SIV 6, 70.0, A3, I(8

The VARIABLES I operation, K8 = l.l*K8, will accomplish the desired action.

However, the more obvious operation, C6 = 1.1"C6, will serve no purpose at

all, since, after the call to VARBLI, the solution routines will compute

the current value of C6, as required by the SIV option (i.e., interpolation

on array A3, then multiplication by constant K8), and store this value into

location C6, thus erasing the result of any calculation of C6 which occurred

in VARBLI.

A similar situation does not exist with regard to the sources

defined in the SOURCE DATA block. All source locations are zeroed before

entering VARBLI. Within VARBLI, the user may successfully enter heat rates

for any desired sources, including those mentioned in the SOURCE DATA block.

: The current value of each source defined in the SOURCE DATA block

will then be added to its specified Q-location after the call to VARBLI,

thus retaining, in the sum, any value placed there by the user during

VARBLI. Sources not mentioned in the SOURCE DATA block, of course, will not

be affected at all.

r

\ ©

3-86

f



/

C'i

Of course, there is no restriction which forces the user to use

the SOURCE DATA block at all. If it is more convenient, sources may be

computed and entered into the Q-locations entirely within the VARIABLES l

block. However, the user must recognize that because the Q-locations are

zeroed before the start of each iteration, it is necessary to reload each

source location during every iteration, either directly in the VARIABLES l

block, or indirectly through definitions in the SOURCE DATA block.

Similarly, the user may find that certain unusual cases require

that a variable capacitance or conductance be mechanized entirely and ex-

plicitly within the VARIABLES l block. To prevent the capacitance or cOn-

ductance calculated in VARBLI from being overwritten by an automatically

calculated value, such elements should be defined in the data blocks, using

only the "non-variable" options (i.e., standard, CAL, or GEN).

The rest of the items in the list of operations appropriate to

the VARIABLES 1 block are relatively self explanatory. One thing which

the user should avoid including in this block is iteration counting logic.

The reason for this suggestion should be evident from the sample flow chart

of subroutine _FRWD (Figure 3-17). It is clear that VARBLI is called at

least once prior to each iteration, but it may be called several times for

each oonTpletely 8ucoessI_l iteration (i.e., an iteration that is not

erased). Thus, if each pass through VARBLI is tallied in simple fashion

(using an operation such as: ITEST = ITEST + I), this tally will generally

be greater than the actual nunWber of successful iterations of the heat

transfer equations.

\

3.4.3.3 VARIABLES 2 Block

The following operations are among those which are appropriate for

inclusion in the VARIABLES 2 block:

I. Examine the results of the iteration

2. Accumulate net heat rates

3. Revise control constants

4. Predictor/corrector logic

5. Change-of-state calculations

6. Set new initial conditions for steady-state calculations

3-87

w



/J
k

The following list describes the status of the thermal network data

locations when subroutine VARBL2 is entered:

I. TE_IPERATURES - Each temperature location contains the newly

calculated temperature of its corresponding node.

2. CAPACITANCES - Each capacitance location contains the value

of the capacitance used during the computations for the
current iteration

3. CONDUCTANCES - Each conductance location contains the value

of the conductance used during the computations for the

•current iterati on

4. SOURCES - Each source location contains the value of the net

heat rate experienced by its corresponding node during the
current iteration, as calculated by the network solution
routine

The sample flow chart for the transient network solution routine

CNFRWD (Figure 3-17) indicates that the current iteration will be accepted

as correct if the user does not set control constant BACKUP # 0 in VARBL2.

Thus, the VARIABLES 2 block gives the user the opportunity to examine the

current iteration and to decide whether or not to proceed. In addition,

the various control constants might be modified in VARIABLES 2 so that

their new values will influence the selection of the time step for the next

iterati on.

Other parameters might also be adjusted in Variables 2 according

to some predictor/corrector scheme. Since VARBL2 is called only once

during each iteration, provided that BACKUP is not set # O, the user can

force each iteration to be repeated, using the first pass for prediction

and the second for correction.

Since the net heat rates and the current temperatures are avail-

able when VARBL2 is called, the VARIABLES 2 block is the appropriate place

for change-of-state calculations. Several subroutines which perform such

calculations are available in the SINDA library.

It should be noted that the steady-state network solution routines

do not perform iterations with respect to time. The basic program flow,

however, is similar to the transient routines, except that VARBL2 is called

only after a steady-state solution has been found, rather than at each

iteration approaching that solution. After calling VARBL2, time is arbi-

trarily advanced one output interval and, if the arbitrary (in the sense

3-88



that the heat transfer equations are independent of time) problem end time

has not been reached, a new steady-state solution is sought. Hence, the

VARIABLES 2 block may be used to compute the initial conditions applicable

to the next solution.

3.4.3.4 OUTPUT CALLS Block

The OUTPUT CALLS block is called when the current problem time

has advanced to a multiple of the output interval, as specified in control

constant OUTPUT. The user can cause OUTCAL to also be called after each

iteration by setting control constant OPEITR f O. Though generally shown

only on detailed flow charts, it should also be noted that all network

solution routines call OUTCAL once at the beginning of each problem* to

give the user an opportunity to record initial values. The following

operations are among those which are appropriate for inclusion in the

OUTPUT CALLS block:

I. Print values of interest

2. Save current values for subsequent printing or plotting in

the post-solution segment of the EXECUTION block

3. Write values to files for later use

These operations are quite self-explanatory and can be implemented in a

very straight-forward manner. The SINDA library contains several pre-

written subroutines which offer the user a variety of printing formats

and file writing capabilities. Several of these routines require the user

to supply multi-word, Hollerith column titles or parameter labels. The

user will find the 'BCD' option of the ARRAY DATA block to be rather

convenient for this purpose.

R

*For all explicit transient routines, except _FAST, the first call to

OUTCAL occurs after a call to VARBLI and a dum_ pass through the equations

which evaluate all automated variable capacitances and conductances. The

dummy pass, which uses a time step equal to the output interval and which is

subsequently erased, is used to establish the stability criterion for the

network and, hence, the true initial time step. CNFAST, which uses the

minimum permissible time step (control constant DTIMEL) for the initial time

step, calls VARBLI, but does not make the dummy pass, before calling OUTCAL

for the first time. The implicit transient routines, which require that the

time step be specified, and the steady state routines, which do not operate

with respect to time, also call VARBLI, but do not make the dummy pass,

before making the initial call to OUTCAL.

3-89



Operatlonal Details

Introduction

The follewing discussion will present the basic information re-

quired to actually prepare an operations block. Examples of properly pre-

pared operations cards will be presented and will serve to introduce the

user, by illustration, to the techniques for mechanizing the actions

described in his flow chart.

Within the SINDA input deck, each operations block is delimited

by a block header card and an END card. All operations belonging to a

given block are placed between the header card and the E)ID card for that

block. The skeleton format for the operations blocks is as follows: (Each

block must appear, in the order shown, even if there are no specific

operations to be included therein.)

!

8 2

÷ +

BCD 3EXECUTION

execution, opez,aCio"na

END
BCD 3VARIABLES l

vczeio.b_ea 1 operations

END
BCD 3VARIABLES 2

vc_iab Zee 2 opera¢ic_,te

END

BCD 3OUTPUT CALLS

output cal_s operations

END

For the sake of continuity, the three basic types of operations

which may be included in an operations block are repeated below:

I. SINDA statements

2. F-type FORTRAN statements

3. M-type FORTRAN statements

( ',

©

3-90



A SINDA statement is a simplified form of a subroutine call which dispenses

with unnecessary key words and permits arguments to be specified using

reference forms keyed to the ACTUAL numbering system developed in the data

blocks. An F-type statement is any valid FORTRAN statement. An M-type

._tatement is similar to an F-type statement, except that the ACTUAL number-

ing system may be used to reference data. That is, F-type statements are

F_ORTRIVIstatements which are not translated by the preprocessor, whereas

M-type statements are FORTRAN statements which are M_odified by the pre-

processor to reflect the same translation from the ACTUAL to the RELATIVE

numbering system that is applied to SINDA statements.

3.4.4.2 SINDA Statements

SINDA statements are used exclusively to call subroutines. Such

subroutines may reside in the SINDA library or the system library, or they

may be specially written by the user and included in his run deck as "load-

and-go" routines. The general format for a SINDA statement which calls a

subroutine that does not require any arguments is as follows:

1 7

2 2 2

an subrout, ine-nc_ne $ corrcaent,,

120 CNFRWD $EX. l

PRNTMP S MORE COI_ENTS $ Exc_'npZe2

where: an .. opt.iona'_ 8t, aY;e.ment manber (2 t,o d d£git, £nteger; ma'tj be
p_a_d anbnahere in oolu_a 2-5)

A statement number does not need to be used on every SINDA statement. Its

only purpose is to provide a target point for program flow control using

FORTRAN IF, GO TO, or DO statements*. When no such target point is needed,

the statement number field (columns 2-5) may be left blank. When a state-

ment number is used, it should be unique to its operation block, but it

need not be chosen in any particular sequential order. Example l shows a

SINDA statement which calls subroutine CNFRWD, A statement number, 120,

is used so that some such FORTRAN statement as GO TO 120 will cause

program flow to proceed directly to this statement. Example 2 shows a

i ¸-

*FORTRAN control statements are introduced in Section 4.3.

3-91



SINDA statement which calls subroutine PRNTMP *. It also shews how the

dollar sign, $, and comments are optional. Comments m_v actually extend

beyond column 72, but any characters past column 72 will not be printed.

SINDA statements which call subroutines that require arguments

are formatted, similarly, as follows:

whe re:

2

÷

=hi

1 7

2 2

÷ +

eu_routine-ncrne (oJj_ ,...on) _,aomme'nt_

DIDEGI (RTEST,AS,G7) $ EX. 3

45 ADD (18.2,STEST,AI3+4) $ EX. 4

ai (i=1, 2,...n)=o__g_cnCs

8n = optionaZ state_nt n_er

A dollar sign may be used to terminate the statement field, leaving the

remainder of the card ( up to column 72 ) for comments. If a complete

statement will not fit on a single card, it may be continued on as many

cards as necessary, as shown below:

1

2

subroutine-home (_1,_8 ,_ ,a4,a5

c_,a?,o_,_%alO, all ,a12,al_,. ..on)

ADD (T4,17 , 9,T21 ,T36,T3 ,T8

TZ7,TI9 $ ADDITIONAL COMMENTS
T14,TI06 ,T9241,308.4,T124 ,TTEST)

7

22

+

oOnTnsnt8

$ comments

SEX. 5410

It should be noted that:

l. A statement number, if used, may appear only on the first

card, when more than one card is required to input a complete
statement.

2. A comma should NOT appear after the last argument on a card.

3. A lefthand parenthesis indicates to the preprocessor that a

•list of arguments follows, and a righthand parenthesis

terminates the list of arguments.

.

*Several library subroutines will be Introducted In this section for

illustrative purposes. Detailed descriptions of these subroutines may be

found in section 6.

3-92



&_ Permissible arguments include literal data values, control

constant names, and the ACTUAL reference forms developed
in the data blocks.

5. Arguments are punched into variable length fields separa_d

by commas. Within a field, up to ten blanks may precede

an argument and any number of blanks may follow an argument.

Item 4, above, merits elaboration. It will be recalled that as

each data block was described, certain "reference forms," such as Tn,Gr.,

An,e, etc., were introduced, and it was stated that these forms could be

used to access the data defined in the blocks from outside of the blocks.

The first usage of these forms appeared in the definitions of the variable

capacitance, source, and conductance options. However, their main use is

to provide a simple means for accessing data from the operations blocks.

Consider example 3, above. To properly use the interpolation

subroutine DIDEGI, the user must supply it with three arguments, as follows:

I. The location of the value of the independent variable, x.

2. The location of the "/.nCegercogent for an array of x, _/ pairs.

3. The location where the result of interpolation, i/, is to be
placed.

The identifier, RTEST, refers to a specific location in the block of

memory reserved for control constants. The identifier (or symbolic

reference form), AS, refers to the location of the integer count for array

number 5. The identifier, G7, refers to the location reserved for the con-

ductance of conductor number 7. Thus, example 3 illustrates a SINDA state-

ment which accomplishes the operation: "Call a subroutine which inter-

polates an array nunl)er 5 to find the conductance of conductor nunloer 7,

using the value of control constant RTEST as the independent variable"

(see also Figure 3-15). Note that, in using subroutine DIDEGI to operate

on RTEST, A5, and G7, it was not necessary for the user to know, for example,

where conductor 7 was located within the block of memory locations reserved

for conductances. It was merely necessary for him to indicate, symbolically,

that it was specifically conductor number 7 that he wished to evaluate.

This ACTUAL numbering system is unacceptable to the FORTRAN compiler because

the SINDA preprocessor reorganizes and packs the user's data, as described

in the discussion of the data blocks. However, the preprocessor rectifies

3-93

i



this inconsistency by performing a translation on each SINDA statement,

replacing each ACTUAL reference with its corresponding, FORTRAN compatible,

RELATIVE reference.

To generalize on the examples above, the following list describes

the form of all arguments permitted in SINDA statements:

I. Data values which are acceptable to the FORTRAN compiler:

a. Integer (e.g., 12345678)

b. Floating point (e.g., 12.4, 4.0E-8)

c. Hollerith (FORTRAN H-type notation, only, e.g., 3HABC)

2. Temperature references of the form: Tn, where: n -- acCua/.

nods number (e.g., T4)

3. Capacitance references of the form: Cn, where: n = actual

node nu_nber (e.g., C4)

4. Source references of the form: Qn, where: n = actual

node nuttier (e.g., Q4)

5. Conductance references of the form: Gn, where: n - aotual

oond_etor number (e.g. _, GS)

6. User constant references of the form: Kn, where:
n = aot,ual oonsto_t n_rZoer (e.g., K7)

7. Array references of the form_: An, or An+e, where:

n = act-_al array number, and e = element position
(e.g., A3,A2+9)

8. Title references of the form: Hn, where: n = word number
(e.g., H20)

g. Control constant names (e.g., TIMEND, RTEST)

When using subroutines, the user must take particular care to see

that the type of each argument supplied matches the type of each argument

expected. That is, if the description of a particular subroutine specifies,

for example, that each argument must be a floating point number, the user

must be certain that the identifiers that are supplied as arguments refer

to locations which contain floating point numbers, and that any data values

supplied directly as arguments are, in fact, floating point data values.

The following examples illustrate this point. Consider subroutine ADD,

which places the floating point sum of the first n-l floating point arguments

f_

r

3-94

\

i



w

into the n-th argument. Assume that the following card was entered in the

CONST_TS DATA blcck:

I

2

+

I0=I.2, II--2.4, 12=0, 13=l.O, 14=I, 15=0, 16=4 $

Example 6, below, shows a correct usage of subroutine ADD. This SINDA

statement would cause the value 4.6 to be stored in the memory location for

user constant nun_er 12. Example 7, however, is incorrect because the

second argument does not represent a floating point nunfoer.

1 7

2 2

ADD (KlO,Kl3,Kll,Kl2) $ CORRECT EX. 6

ADD (KlO,Kl4,Kll,Kl5) $ INCORRECT EX. 7

Subroutine ADDFIX, on the other hand, operates on integer (fixed point)

arguments, thus making example 8 correct, with constant Kl5 receiving the

value 5, and example 9 incorrect because Kl3 is not an integer.

I 7

2 2

4, 4.

ADDFIX (Kl4,Kl6,Kl5) $ CORRECT EX. 8

ADDFIX (Kl3,Kl6,KlS) $ INCORRECT EX. 9

As explained in the discussion of the CONSTANTS DATA block, an

identifier is equated to the memory Iocatlonwhere the current value repre-

sented by the identifier is stored. When identifiers appear in argument

lists, they serve to communicate either (1) the location of a particular

value, or (2) the starting location of a sequence of values, depending

on what the given subroutine expects. Thus, for example, the identifier,

T5, may be used as an argument that is expected to be a single floating

point value. The value used by the subroutine will be the current value

of the temperature of node nunber 5. In addition, however, this same

identifier may be used as an argument that is expected to be the starting

location of a sequence of floating point values (i.e., the starting location

of an array). The values used by the subroutine will be the sequence of

3-95



/
• i

L •

data values located in the node temperature table beginning with the

temperature of node number S.

To illustrate these two uses for the same identifier, consider

the .following examples. Assume that the following card was included in

the NODE DATA block:

l

8 2

GEN 5,10,I,70.0,4.5 $ lO NODES, 5 THRU 14

and the following cards appeared in the EXECUTION block:

! 7

2 2

ADD (T5,T6,T7,T8,T9,TIO,STEST) $ EX. lO

SUMARY (6,TS,STEST) $EX. II

Example lO shows a proper usage of the identifier, T5, as a reference to a

single value. On the other hand, subroutine SUMARY requires three arguments,

(1) the number of values to be added (integer), (2) the starting location of

the sequence of values (array) to be added, and (3) the location to receive

the result of the addition. Hence, example II shows a proper usage of the

same identifier, T5, as a reference to the starting location of an array.

Clearly, the operation in example lO performs the same action as the

operation in example If.

It should be clear that, in this type of application, although a

knowledge of the relative nun_erin 9 is unnecessary, an awareness of the

relative orderin 9 of the temperatures can be quite useful. This holds true

for the other classes of data, as well.

Supplying an identifier that represents the starting location of

an array (i.e., sequence of data values), however, should not be confused

with supplying an identifier that represents the location of the integer

count for an array. In the former case, the number of data values in the

sequence must be supplied as a separate argument, but in the latter case,

the integer count contains this number and the sequence of data values is

assumed to begin at the memory location immediately following the integer

}

3-96

B



Y

count. Thus, while the user is restricted to using Identifiers of the

form: A_, when a subroutine expects an argument representing an array

integer count, the user may supply almost any identifier as an argument to

a subroutine which expects an array starting location (as illustrated in

example 11).

Consider the following illustration: Assume that array lO con-

tains floating point values. Comparing example II with example 12, below,

it will be seen that the latter will cause the sum of the values in array lO

to be placed in dummy control constant UTEST. The integer count reference,

AlO, supplies the number of values in array lO, and the data value reference,

AlO+l, supplies the starting location of those values. On the other hand,

the use of the integer count reference in example 13 supplies the number

of values in array lO, along with the implicit knowledge (implicit, that is,

in the sense that subroutine DIDEGI expects it to be so) that the array

of values begins at the next location in memory immediately following the

location of this integer count.

I 7

2 2

SUMARY (AIO,AIO+I,UTEST) $ EX. 12

DIDEGI (I'FEST,AIO,RTEST) $ EX. 13

When using explicit data values (instead of identifiers) as

arguments, the user must take great care to insure that the given subroutine

does not alter such arguments in any way. Stated another way, any argument

which is (or might be) altered by a subroutine must be supplied as an

identifier, not a data value. While this rule is seldom violated intention-

ally, experience has shown that it is often violated through oversight,

with generally chaotic consequences. In the usual case, the error is caused

by transposing the order of the arguments when calling a particular subroutine.

f" "!

\

3-97



Consider the following statements:*

1

1 7 2

F KTEST=I
ADDFIX (KTEST,3,2)

F LTEST-2+2

F WRITE (6,100) LTEST

F lO0 FORMAT (18)

The call to subroutine ADDFIX is clearly in error because the result of the

addition will be returned to the last argument which is not an identifier.

Evidently the user believed that the result would be returned to the first

argument. The chaotic effect of this bad call will be obvious when it is

understood that the value of LTEST that is printed by the WRITE statement

will be 8, not 4! Two plus two equals eight? Yes, because '2' no longer

equals 2 after the bad call to ADDFIX; it now equals 4, the sum of KTEST

and 3. Hence, the worth of the warning is clear: do not supply data values

as arguments which receive the results of a subroutine.

3.4.4.3 F-type FORTRAN Statements

An F-type FORTRAN statement is any valid FORTRAN statement. Such

statements may be used in any of the operations blocks, and their basic

format is as fol lows :

12 67

F_

7

3

+

FOF_BAN-statem_n_ eo_nen t8

F GO TO 120 EX. 14

F140 IF (K(3).LE.75) ITEST = 4 EX. 15

Fl30 IF (RTEST.LE.STEST.AND.ITEST EX. 16
F *.GT.KTEST) GO TO 27

The 'F' in column 1 mustbe present in order to inform the preprocessor that

the card contains an F-type FORTRAN statement. This °F' will be moved to

C• i

©

*This example requires the use of F-type FORTRAN statements, which are dis-

cussed in the following section. However, the particular statements shown

here should not be a source of confusion as they are quite elementary.

3-98



column 81 by the preprocessor so that the card will conform exactly to the

format required by the system FORTRAN compiler. A statement nu_er, 8n,

of one to four digits may be entered in columns 2-5, if required by the

user's application. If a complete statement will not fit in columns 7-72,

it may be continued in columes 7-72 of succeeding cards by placing a

"continuation character" (any character except blank or zero) in column 6

of each additional card.

Example 14 shows a correct F-type FORTRAN statement. Example 15

shows a correct statement including a statement number, and example 16

shows how a statement may be extended to more than one card.

Since the dollar sign, $, has a special meaning in FORTRAN, it

may not be used to indicate the end of the statement field on an F-type

card. All comments must be restricted to columns 73-80. Although SINDA

provides its own comments-only card in the form of the REM card, it will

also accept the following, FORTRAN-compatible comment card:

12

++

Coon_ts

_HIS FORTR_-COMPATIBLE COMMENT CARD IS EXAMPLE 17

It will be noted that a different type of user constant reference

form, K{3), is included in example 15. This is a FO_P_aJ1-compatible relative

reference. It directly addresses the third location in the table of user

constants. The constant so referenced will be the third user constant

entered in the CONSTANTS DATA block. RELATIVE references take the general

form of:

I,(m)

where: L = the s_e key letter used for ACTUAL refer_nees
(i.e., T,C,Q,G,K,A and H)

m ,,F_LATIVE number.

Since the user constants are referenced by the letter 'K', and 'K' is

assumed, by the FORTRAN compiler, to represent integer values, a conflict

of arithmetic type may result when the location referenced contains a

floating point value. For this reason, references to floating point user

3-99



/

constants should use the key letters 'XK' in place of 'K'*. The 'XK' form

need be used only in arithmetic and relational expressions in FORTRAN. For

example, consider the following statements:

I

F
F

7

7 3

IF (RTEST.LE.K(3))STEST=K(4) EX. 18
IF (RTEST.LE.XK(3))STEST=XK(4) EX. 19

If user constants K(3) and K(4) contain floating point numbers, the

statement in example 18 will produce erroneous results. The difficulty

arises because the FORTRAN compiler will assume that K(3) and K(4) contain

integers, which must be converted to floating point values before being

compared with or transferred to the floating point values RTEST and STEST,

respectively. Still assuming that K(3) and K(4) contain floating numbers,

then example Ig shows the correct form for referencing them.

Referencing data by its relative input order is clearly more

tedious and more prone to error than referencing data by its user-assigned

actual number. For this reason, the M-type statement was developed to

permit the user to reference data by its actual number within ordinary

FORTP.AU_-type statements.

There is one application where the relative numbering system may

be used to good advantage. This is the case where the user wishes to

reference an entire data table {e.g., the entire array of temperatures, or

conductances, etc.). Clearly, it would be preferable to reference the

first relative location of the array, rather than to attempt to fix the

input order such that node or conductor number such-and-so is always the

firel)element defined in a given block. For example, the following cards

will cause the average temperature of all the nodes in a network to be

placed in dummy control constant I'TEST:

7

1 7 3

F CALL SUMARY(NNT,T(1),STEST) EX. 20
F TTEST=STEST/NNT EX. 21

*The identifiers 'K' and 'XK' are automatically EQUIVALENCED in each
operations block.

3-I00

f_

t:ij



The Idenl;ifier, NNT, is among a group of problem size parameters which are

initialized by the preprocessor, should never be altered by the user, and

may only be used in FORTRAN statements. NNT represents the total number

of temperatures in the temperature table. T(1) references the first

relative location in the temperature table. Hence, it should be clear

that the statement in example 20 will cause the sum of all the temperatures

in a problem to be placed in dummy control constant STEST, regardless of

the number of nodes or their relative input order in the NODE DATA block.

By way of comparison, the same basic action could be implemented with the

following SINDA statements:

I 77

1 7 2 23

F ITEST=NNT EX. 22
F RTEST=NNT EX. 23

SUMARY (ITEST,T7,STEST) $ EX. 24
DIVIDE (STEST,RTEST,TTEST) $ EX. 25

Note that the statement in example 24 forces a constraint on the input

data; namely, that the first node entered in the NODE DATA block must always

be node number 7. Since the identifier, NNT, is not recognized in SINDA

statements, it was necessary to place the value of NNT into a dummy control

constant. Example 22 shows that a constant with an integer type name,

ITEST, was selected so that the value of NNT would be preserved in integer•

form for use as the first argument to subroutine SUMARY.

Subroutine DIVIDE, however, requires floating point arguments of

dividend, divisor, c_d _otient, so it was necessary to convert the value

of NNT to floating point form by the statement in example 23 (the FORTRAN

compiler assumes RTEST to be floating point, and thus converts NNT from

integer to floating point before transferring the value to RTEST). The

user should understand that FORTRAN arithmetic statements may be of mixed

type, (see example 21) wherein all quantities will be automatically con-

verted to the type of the result before the arithmetic is performed. On

the other hand, subroutines, whether called from FORTRAN statements or

SINDA statements, expect and require arguments of a specified type, and

cannot check to see if the arguments supplied are of the correct type.

3-101



Since the problem size parameters (e.g., NNT) are usable only in

FORTR_4 statements, it is appropriate to define them at this point. The

user is reminded that these parameters are referenced by integer-type

ideqtifiers (i.e., they begin with the letter I-N) are automatically

initialized with integer values by the preprocessor and should never be

altered by the user.

Identifier

NND

NNA

NNT

NGT

NCT

NAT

LSQI

LSQ2

LENA

Problem Size Parameters

Value

Number of diffusion nodes in network

Nu_er of arithmetic nodes in network

Total number of nodes in network

Total number of conductors in network

Total number of user constants

Total number of arrays defined

Total number of words in pseudo compute sequence
of element interconnections

Total number of words in pseudo compute sequence

for automated options cal cul ati ons

Total number of words occupied by all arrays

The value of NCT will, in general, exceed the number of user constants de-

fined in the CONSTANTS DATA block. This occurs because the preprocessor

automatically extends the list of user constants to include any floating

point data values used as multiplying factors in the NODE, SOURCE, or

CONDUCTOR DATA blocks.

3.4.4.4 M-type FORTRAN Statements

M-type FORTRAN statements are similar to F-type FORTRAN state-

ments except that the actual numbering system may be used to reference

data. The basic card format for the M-type statement is the same as for

the F-type statement except that the letter 'M' must appear in column l,

instead of the letter 'F'. The preprocessor will convert each actual

reference to its FORTRAN-compatible relative reference by applying the

same procedure used to convert actuals to relatives in SINDA statements.

©

3-102



0

The following is a list of the ACTUAL reference forms which may

be used in M-type statements, along with their corresponding RELATIVE forms:

ACTUAL FORT RAN- comp atibIe
form RELAT IVE- form

Tn T(m)

c. cCm)

Q. qCm)

G. G(m)

K. KCm)

XKn KX(m)

A(m)

X(m)

NXm NX(m)

n = Actual number

m = Corresponding relative number

where:

As for the F-type statements, the special 'XK' identifier refers to the

same data as the 'K' identifier, but is provided so that arithmetic type

incompatibility can be avoided when a user constant contains a floating

point number and must be referenced in a FORTRAN statement. The identifiers

'X' and 'NX' reference a special array that will be discussed separately in

the section on dynamic storage requirements (4.2). As implied above, there

is no actual numbering system associated with the 'X' array, but the no-

parentheses reference form has been provided for the sake of convenience.

In considering the following examples, assume that the prepro-

cessor has established the following correspondence between actual and

relative numbers' (Assume, also, that, by chance, the same correspondence

•applies to each data block.)

ACTUAL (n) RELATIVE (m)

I0 1

20 2

30 3

40 4

50 5

3-103



12 7

H XK20=(TlO+T40)/2.0

M42 GIO:SQRT(K20)*XK30
M XK40=ASO

7

3

+

EX. 26

EX. 27

EX. 28

FORTRAN EQUIVALENTS FOR EXAMPLES 26, 27, AND 28

XK(2)=(T(1)+T(4))/2.0 EQ. EX. 26

42 G(1)=SQRT(K(2))*XK(3) EQ. EX. 27

XK(4)=A(5) EQ. EX. 28

Example 26 will cause the average temperature of nodes lO and 40 to be

placed in user constant 20 as a floating point number. The statement in

example 27, which has been assigned statement number 42, will compute the

conductance of conductor lO as the square root of the value in user

constant 20, times the value in user constant 30. The conductance will

be a floating point nu_er, as required, and it is assumed that user

constant 30 contains a floating point number (because the floating point

identifier, 'XK', was used in place of the integer identifier 'K'). The

FORTRAN library square root function, SQRT, expects a floating point

argument, and it is clear, from example 26, that constant 20 does, indeed,

contain a floating point number. The array reference, ASO, in example 28,

is of the integer count form Am, and so references the integer count for

array number 50. The statement will result in user constant 40 receiving

this integer value. No conversion of arithmetic type will occur because

the identifiers, 'A' and 'XK', are both of the same type (i.e., floating

point), and the computer's internal logic will not be confused because

replacement (i.e., equals sign) is not an arithmetic or relational operation.

Quite simply, the content of location ASO (which just happens to be an

integer) will be stored in the location of user constant 40. As a result

of this statement, the integer identifier, K40, may be used in subsequent

statements as a reference to the value of the integer-count for array 50.

The reference forms described above are basically the same as

those used in SINDA statements. However, in order to take full advantage

of the versatility inherent in FORTRAN statements as well as the convenience

C

3-104



inherent in the actual numbering system, another class of reference forms

Thesehas been developed for exclusive use in M-type FORTRAN statements.

forms are enumerated in the following list:

where:

ACTUAL Equ ivalen t

Referen ce FORT RAN -comp ati bIe
Form Reference Form

T(n+e) T(m+e)

C(n+e)

Q(n+e)

S(n+e ) G(m+e )

K(n+e ) K(m+e)

XK(n+e ) XK (m+e)

A(n+e) A(m+e)

X(,.+e)

NX (m-,,-e) NX (m,'-e)

n = Actual number

m = Corresponding relative number

e -- Any valid, FORTRAN-compatible, integer 8ubscripting exp.ression

(Again, the 'X' and 'NX' forms represent a special case that will be dis-

cussed in Section 4.2.) Since, the actual forms above are syntactically

identical* to the relative forms used in F-type statements, the relative

reference forms may not be used in M-type statements. In other words, in

scanning an M-type card, the preprocessor will assume that any parenthesized

expression following a key letter (i.e., T,C,G, etc.) includes an actual

reference number which must be converted to its corresponding relative

number.
i

The versatility of the various types of reference forms useable

in M-type statements is illustrated in the following examples. Assume,

first, that the relative number for actual number 90 is 9. Consider, then,

the FORTRAN-compatible equivalents generated by the preprocessor for the

following expressions which might appear in an M-type statement:

i'

*In other words, both the actual reference forms and the relative forms

have the same structure: letter, left-parenthesis, arithmetic-expression,

right-parenthesis.

3-105



ACTUAL Expression FORTRAN-Compatible Expression

(I) AgO A(g)

(2) A(90) A(9)

(3) Ago+I A(9)+I

(4) A(90)+I A(9)+I

(5) A(90+l) A(g+l)

(6) A(gO+L) A(g+L)

(7) A(90+I)+L A(9+I)+L

(8) A(90+I+L) A(9+I+L)

The user should note that ACTUAL expression (3) appears to be a SINDA data

vaZue reference form referring to the first data value in array number 90.

However, when this expression is encountered on an M-type card, the equiva-

lent FORTRAN will cause a value of l to be added to the value of the integer

count for array 90. In M-type statements, expression number (5) would be

required to properly reference the first data value in the array. Similarly,

expression number (6) is a reference to the L-th data value in array 90,

and expression (8) references the (l+L)-th data value. Expression (7) is

equivalent, in value, to the sum of the first data value in array 90, and

the current value of L.

The greatest utility of these reference forms lies in the fact

that they permit the user to write FORTRAN statements which reference arrays

or sequences of data values without requiring that the user know the RELATIVE

locations of these values. For example, suppose that a group of ten boundary

nodes, numbered 15 through 24, were entered in the NODE DATA block by means

of the GEN option. Further suppose that the temperatures for these nodes

are to be read from a magnetic tape assigned to logical unit number 3. The

following M-type statement will accomplish this action:

7

I 7 3

M READ(3) (T(15+J) ,J=O,g) EX. 29

if---

"i

3-I 06



Here, again, it was not necessary for the user to know the relative location

of the temperatures, although the knowledge that their relative orderin 9

placed them in sequence, one immediately after the other, proved quite

useful.

As an example, the following M-type statements will cause all of

the values in array number 90 to be written out on logical unit number 4,

regardless of the number of values or the particular RELATIVE location of

the array:

1 7

M XK40=AgO

M ITEST=K40

M WRITE(4) (A(gO+I),I=l ,ITEST)

7

3

EX. 30

EX. 31
EX. 32

I"

3-I07

i



_.,_ _. OTHER TOPICS
s

.r
,_°

4.1 INTRODUCTION

The following sections contain discussions of various topics

whicfi could not be classified exclusively as input deck options and

features.

The user must be familiar with the subject of dynamic storage

before he can use any of the network solution routines in the library.

Hence, Section 4.2 is "required reading" for the neophyte attempting to

solve his first thermal problemwith SINDA.

Section 4.5, an Introduction to the SINDA Library, will also

prove useful to the new user as it includes a discussion of the conventions

which are used in Section 6 (SiNDA Library), as well as a short overview

of the various routines described therein.

Section 4.3 contains a summary of the various types of FORTRAN

statements which may be used for program flow control. This section is

recommended for users who are unfamiliar with the FORTRAN language.

Section 4.6 contains a lucid discussion of those control con-

stants which must or may be specified by the user when using the various

network solution routines. New users will find this section helpful as it

will expose them to the high degree of computational control over the

solution routines which can be achieved via t_e SINDA control constants.

Experienced users will also find this section helpful because it contains

guidelines for the selection of operational values for several of the more

useful, though frequently misused and disused, control constants.

The remaining sections under the class of Other Topics discuss

subjects which may be considered optional from the standpoint of actually

using SINDA.

4.2 DYNAMIC STORAGE

Dynamic storage is a feature of SINDA which allows SINDA library

subroutines to obtain working storage locations from a common pool on an

as-needed basis. When the user includes a subroutine in one of his opera-

tions blocks, he should check the writeup for this routine, in the section

4-I



/

on the SINDA library, tc see how much, if any, dynamic storage is required.

The minimum total dynamic storage needed for a given problem will be the

maximum sum of the requirements of all nested subroutines. The nesting of

subroutines should not be overlooked since this generally expands the

dynamic storage requirements. For example, consider two subroutines, SUBA

and SUBB, each of which requires, say, lO0 locations. First, assume that •

both are called separately from the EXECUTION block. When SUBA is called,

it will request lO0 locations for temporary use. When it returns to the

EXECUTION block, these lO0 locations will be returned for use by SUBB, when

it is called. Hence the total dynamic storage required is lO0 locations.

As a second case, however, assume that SUBA calls SUBB as part of its

calculations. In this situation, the lO0 locations required by SUBA will

still be in use when SUBB is called, and a total of 200 dynamic storage

locations will be required.

When dynamic storage is needed, the maximum number of available

locations is specified by including the following three FORTRAN cards in

the EXECUTION block:

1 7

¢ ¢

F DIMENSION X(n)
F NDIM=n

F NTH=O

where: n--totaZ number of dynamio storage Zocations (integer data value)

For example, the following cards will reserve lO00 locations for use as

dynamic storage:

I 7

¢ ¢

F DIMENSION X(1000)
F NDIM=IO00

F NTH=O

EXAMPLE

These cards should be included as the first three cards in the EXECUTION

block. The availability of the reserved locations is automatically

communicated to the other blocks and subroutines through FORTRAN named

COMMON.

4-2

©

©



'X' is the identifier for the special array which constitutes

the "pool" of storage locations. NDIM always contains the number of loca-

tions not currently in use, and NTH contains the position of the last

location currently in use. From these descriptions, it follows that

dynamic storage is acquired, referenced, and released according to the

basic structure shown below:

To acquire N locations:*

1 ?

F IF (N.GT.NDIM) CALL EXIT (not enough locations available)
F LOC=NTH

F LEN=NDIM

F NTH=NTH+N

F NDIM=NDIM-N

To reference the I-th location among the N that were acquired: (F-type

statements, only)

X(LOC+I)
NX (LOC+ i)

(floating point identifier)

(integer identifier)

To release the N locations originally acquired:

1 7

F NTH=LOC
F NDIM=LEN

This basic structure is already included in all library routines which

utilize dynamic storage, but is shown here for the benefit of users who

may want to use this feature explicitly as part of the flow for a par'

ticular operations block.

Itshould be clear that the reference forms shown above will not

work in an M-type statement, because 'LOC' is an identifier, not a literal,

integer data value. The M-type reference forms, Xm, NXm, X(m+e), and

((

*The identifiers LOC and LEN represent arbitrary simple variables which

are used to hold the previous values of NTH and NDIM while the given
subroutine accesses dynamic storage.

4-3



NX(m+e),may only be used when m is known explicitly beforehand, and can

thus be specified as an integer data value.

4.3 FORTRA_ CONTROL STATEMENTS

The purpose of this section is to familiarize the user with the

basic types of FORTRAN statements which are available for implementing

program flow control. No attempt will be made to instruct the user in the

formal details of utilizing such statements correctly, since such details

may be found in any standard FORTRAN text. 8 The following list shows the

types of FORTRAN statements which may be used to effect program control

and gives an example of each:

Statement Type

I. CONTINUE

2. unconditional GO TO

3. computed GO TO

4. assigned GO TO

5. _rithmetio IF

6. Zogieal IF

7. DO Zoop

Ezo_p Zs

! 7

÷ +

F 450 CONTINUE

F GO TO 350

F 160 GO TO (200,250,300),M

F GO TO N

F 200 IF (ITEST+KTEST) 250,300,400

F IF (RTEST.LE.STEST) ASSIGN 160 TO N

F DO 450 M=l,3

The CONTINUE statement causes no action to occur, but is useful

as a dummy statement to which a statement number may be assigned. CONTINUE

statements are often used to set up a skeleton framework of statement

numbers for program control.

The unconditional GO TO statement is used to transfer control

directly to the statement prefixed by a certain statement number. This

statement number must be known and specified at compile-time and may not

be changed at run-time.

The computed GO TO statement permits control to be transferred

to the statement prefixed by the n-th statement number in a list of state-

ment numbers, where n is supplied as a simple integer variable.

4*4

_j



The asslgned GO TO statement is similar to the unconditional

GO TO except that the statement number to which control will be transferred

is specified as a variable. This variable is associated with a specific

statement number by using an ASSIGN statement.

The cL,_tl_rneti_IF statement is used to transfer control to one of

three specified statement numbers, depending on whether a given arithmetic

expression is negative, zero, or positive.

The _ogical IF statement is used to cause the execution of a

given statement if, and only if, a logical expression is true. Logical

operators include .NOT.,.OR., and .AND. and may operate on logical expres-

sions or variables. Arithmetic expressions connected by relational oper-

ators are logical expressions. The following relational operators may be

used:

.EQ. - equal to

.NE. - not equal to

.LT. - less than

.GT. - greater than

.LE. - less than or equal to

.GE. - greater than or equal to

The DO loop may be used to cause the execution of a group of

statements to be repeated for successively incremented values of a so-

called "index variable."

4.4 MULTIPLE RUN CAPABILITIES

The SINDA system includes three capabilities f_r performing

multiple runs, based on the same baseline problem, which provide consid-

erable convenience and versatility for extended or parametric analyses.

These three features are as follows:

I. Edit Options

2. Store/Recall Option

3. Parameter Runs

4-5



The Edit options, discussed in Section 4.4.1, permit the storing,

retrieving, and updating of entire raw input decks. The Store/Recall

option permits the storing and retrieving of preprocessed input decks and

is discussed in Section 4.4.2. Parameter runs, discussed in Section 4.4.3,

allow changes to be made to the data blocks only, without reprocessing the

entire input deck. The Edit options and the Store/Recall option may never

be used at the same time. Parameter runs must always be used when the

Store/Recall option is used and may or may not be used when one of the

Edit options is used.

4.4.1 Edit Options

The Edit options provide the capability for storing an entire

SINDA input deck on a magnetic tape (or other permanent file device), in

the form of raw, unprocessed card images. Changes to any part of the

deck are made by specifying "correction cards" which are similar to the

"correction cards" used for updating symbolic program files. It is most

appropriate to use the Edit options when processing multiple runs which

require changes to the operations blocks of large problems. The Edit

options are recommended for large problems because a magnetic tape is

intrinsically more reliable and easier to handle than a large box, or

boxes, of punched cards. They are recommended when changes to the opera-

tions blocks must be made because they constitute the only multiple-run

feature which permits such changes to be made in a system,independent

manner.*

The selected Edit option is indicated to the preprocessor by

placing its "Option Number" (blank or O, 1, 2, 3, or 4) in column 20 of

the INPUT CONTROL card. The INPUT CONTROL card, also known in CINDA-3G

as the STORE/RECALL card, is always the first card in the SINDA input deck.

That is, it precedes the problem specification card (which is the block

header card for the TITLE BLOCK.)

0

*Changes could be made directly to, for example, subroutine EXECTN, but

such a procedure would require an additional understanding of the FORTRAN

compiler at the user's computer installation.

4-6

©



f

Edit Option Number (} (or blank):

This option indicates that the Edit capability is not to be used.

Either a complete SINDA input deck should follow the INPUT CONTROL card,

or the card should indicate that the Recall option is desired (see Section

4.4.2).

Edit Option Number l

Placing a l in column 20 of the INPUT CONTROL card indicates that

the complete SINDA input deck following this card should be copied to the

Edit Output Tape. As each card is read and written to the Output Tape, it

is also printed, along with an Edit LINE NUMBER. These line numbers are

used as reference points for later runs incorporating CORRECTION CARDS.

When the entire deck is transferred to tape, the tape is rewound and the

file assignment for the Preprocessor Input Unit is automatically adjusted

so that it will read the SINDA input deck from the Edit Output Tape

(instead of cards). Clearly, Option l is used for initially transferring

a SINDA input deck from cards to tape. The tape thus produced may be used

for subsequent runs by specifying option numbers 2, 3, or 4 on the INPUT

CONTROL card for such runs.

Edit Option Number 2

Placing a 2 in column 20 of the INPUT CONTROL card will cause

the SINDA input deck stored on the Edit Input Tape to be updated with

changes specified on correction cards and transferred to the Edit Output

Tape. The updated deck on the Output Tape will then be used as the source

of input for the preprocessor. A listing of the updated deck along with

new Edit line numbers is also produced.

The Edit Output Tape may be saved or assigned to a scratch file,

depending on whether the updated deck it contains represents a significantly

different baseline model when compared to the deck on the Edit Input Tape.

The deck of correction cards, which follows the INPUT CONTROL

card, is made up of oneor more CORRECTION GROUPS arranged in the order

of increasing Edit line numbers. Each correction group consists of an

Edit CONTROL CARD followed by any number of SINDA cards. (A "SINDA card"

4-7



is any card that may appear in a SINDAinput deck, except the INPUTCONTROL

c_rd.) Edit control cards may assumeeither of the following forms:

1

-lO133

-I0425 ,10428

(insertion fo_m)

(deZetion form)

where: n, m = Edit line numbers from the !istin_ of the SINDA deck

presen_ on the Edit Input Tape.

Note: n must be less than or equal tom when using the deletion form.
No imbedded blanks are permitted.

The INSERTION FO_ will cause any SINDA cards following such a control

card to be inserted in the existing input deck after the line numbered n.

The DELETIO)! FORM will cause all lines numbered n through m, inclusive,

to be deleted and replaced by any SINDA cards following such a control

card. Example I will cause the SINDA cards following this card to be

inserted after line number I0133. Example _ will cause lines I0425 through

10428 to be deleted and replaced by any SINDA cards which follow this card.

Edi t Option Number 3

Placing a 3 in column 20 of the INPUT CONTROL card will cause the

SINDA input deck stored on the Edit Input Tape to be used directly by the

preprocessor. No changes may be made to the deck and no time is wasted

transferring the deck from the Input Tape to the Output Tape.

Edit Option Number 4

Placing a 4 in column 20 of the INPUT CONTROL card will cause the

same actions as described for Edit option number 2. In addition, however,

this option will process each SINDA data card and operation card by remov-

ing any unnecessary blanks from columns 12-80 and by inserting a dollar

sign, $, at the end of the non-blank data so that the preprocessor will

not waste time scanning and processing purposeless blanks. It would be

wasteful to use Option Number 4 without arranging for the Edit Output Tape

to be saved so that the compressed deck can be used for subsequent runs.

4-8

\L_.-



Edit Punching Capability:

If a minus sign, -, is placed in column Ig of the INPUT CONTROL

card when Options I, 2, 3, or 4 are specified, each card image of the

updated input deck will be punched out at the same time as it is input to

the preprocessor. When using this capability with Options l, 2, or 4, the

user might save the Output Tape, if he needs both punched card and tape

copies of his deck or he can assign the Output Tape to a scratch file if

he wants only the punched deck. The user is warned that the input deck

punched by this feature will not, itself, contain an INPUT CONTROL card.

Figure 4-I summarizes the actions of the various Edit options.

It should be noted that for those options which use correction cards, the

number of correction cards supplied by the user may be zero.

tr';

EDIT OPTION
RUt'IEER

(COLUMN 2O)

mNUS (-)
IN COLUMN 19

SOURCE

OF RAW

INPUT DECK

CAROS

INPUT TAPE

INPUT TAPE

SOlaCE
OF

CORRECTIONS

CARDS

CAROS

SOURCE OF
INPUT TO

PREPROCESSOR

CAROS

OUTPUT TAPE

OUTPUT TAPE

INPUT TAPE

OUTPUT TAPE

NOTES

STORE/RECALL MAY BE USED

OUTPUT TAPE MAY BE SAVED

AND USED AS INPUT TAPE

FOR SUBSEQUENT RUNS

USED TO MAKE CORRECTIONS

TO RERUN A PREVIOUS CASE

OUTPUT TAPE CONTAINS
COMPRESSEDCARD IMAGES

CAUSES THE CARD IMAGES INPUT TO THE PREPROCESSORTO BE PUNCHED.

FIGURE 4-I: SUMMARY OF EDIT OPTIONS

Figures 4-2, 4-3, 4-4, and 4-5 show sample card decks input by

the user for, and the Eclit printouts resulting from, the various Edit

Options.

4-9



INP_ CAI?DS ,_/-
BCO 3TH(RP_ALSPC$
K0 g SAMPL( THEM'L_,.N(TWORK
[Nil
SOD 3NODE 0_TA

l. 70.. 0.,71, 2. 70.. 0.21. 3. ;'0.. 0.21
*10.-460., 1.0

[NO
DCD 3.?_UNC( 0ATA

I,, .b
(NO
8CO XONGUCT0Jt 0AfA

I, I, Z. I.K-:3. 2. Z, 3. 1.9(-3
-I0o 3, IO_ 8.6£-10

EW
BCO X0I_$TANTS 0ATA

TIM[NO • 100., 0(ITPUT • 1O.. 0TIqPCA • Ill.
DO
BeD 3ARRAY0AfA
END
DC0 )E XECUTt0N

0II4_NSION X(I0)
NOIN • 10
NTH '0 O

CNFRI.O
ENO
OCO ,)VAR|AllLES 1
ENO
BeD ]VARIABLES 2
ENO
8C0 ]OUTPUT CALLS

mNTNP
DO
KD :)END OF DATA

Input Control C_rd

$ RAO|ATION TO SPACE

0

Edit Line Numbers.-_.

PRI?;TOUT
i

SINOA - TAPE INPUT {_IT)

EDIT OPTIOI¢ I HA": BEEN 5FECIF:[D

5l?ifl& IfiPttY 0f.CK LISTING WI11_ [0fT L|NE f4_N4BEPtS
0 I 2 ) 4 5 5 7 8
12345678c)0I? 345678gQ 1234567890123456789(112345678g01:_'345678901Z34.r_ 7A901234S6789Q

KD )IW(RPfAL SPCS
6C0 9 gmPtC TN(a_U_. NETVOn_
(NO
B(O 3NCO[ (MTA

I, 70. o 0.21o 2, 70., 0.21. 3o 70.o 0.21
-10. -4&O.. 1.0

EnD
KO 3SOLVE OATA

1, .S
(NO
KO XONOUCTOII DATA

I, I, 2, 1.9E-3o Z, Z, .I, 1.9E-3
-1@, 3o 10, I.tJE-10

[NO
KO )CONSTANTS(MTA

TIWNO • 10Q., OUTPUT • 10.. DTP_CA • 10.
(nO
IC0 3AnAY (MTA
(nn
8(0 )(I(CUTION

l" PIMENSIQa x(1O)
Ir NOlle * 10

NTN • O
CNFll510

(NO
8(;0 3¥AIINJLE$ 1
(_
KO 3VAnIAOt.[5 2
[NO
KD 3OUTPUTCALLS

PIINTMI'
ENO
DCO ](NO OF _TA

S SPACE _00(

S P.&OIAT|ON TO SPACE

10001
10OO2
IO00)
10OO4
10OO5

10OO7
1O000
10_9
lO01O
10011
I0012
lOQl3
IMl4
l_IS
lOOl6
10017
10018
lOOlg
I0020
lO021
10022
10023
10024
10OZS
1OO25
10027
10028
10029
100)O
10031
10032
1O033

©

FIGURE 4-2: SAMPLE INPUT CARDS AND PRINTOUT FOR EDIT OPTION 1

4-10



Z'NPUT. CARDS
2

. IOOQ1.10(X31

•'4¢D 3THERICAL LPCS

-10OI6

OTtl_l • .2So NL(2OP * 20, DRLXCA • .1

-10021.10022

F 0 II,|£NSION X(IOO)
F NOI_q • 100

- 10Q24,10024

CSG_P

CI_'UeK

%.

PRINTOUT
• ii SINDA - TAPE INPUT (EDIT)

Chit OPTlOt! Z HAS BEEN SPECIFIED

TiC[ ft)LLgWifSG EDiT C)_N_S HAVE BE(N SP(CIFIED

* 100OI. I0001

8C8 3THERI'ML LPCS

-I0018

DTII'_I • .ZS. ta._P • ZO, r,,_LXCA - .I

-10021.10072

F OIMENSION x(lOO)

F _gIN • 100

- 10024,10024
CSGONP

CNFMBK

SI_DA I_P_T OECX LISTING v|TH EDIT LINE NUM6ERS

0 I Z 3 4 S 6 7 a

1_4S_89_34S6789_23dS_89_34_678_12_4S67g9_2_4_7_123_SS789_12]4_6789_

lEO 3TH(AtML LPCS

8C n 8 5AJOLE THERMAL NETM(_K

END

lED ]nOOE DATA

I, 70., 0.21, 2. 70., 0.21, 3, 10., 0.Zl

-I0, -460.. 1.0
(NO

lEO )SOlJRCE DATA

I,.5

(NO
IICO ]CONOIJCTOR DATA

1. I, 2. 1.9( .1. Z. Z. 1, 1.9[-3

-10, 3, 10, 8.6E-10

('In

8CO 3CONSTANTS 0ATA

T|M£N0 • 100., OUTPUT • 10., DTMPCA • 10.

8TIHEI • .28, NLOOP - 20, ORLXCA • .1

(NO

lED 3AqniY OATA

3C0 ]EXECUTION

O|lqf_qS|ON X(100)

VOIN • I00

NTN • 0

r.sc,o_,

CNFUBI.

EIIO

IICD ) V&IIIABLES I

(NO

KO ] VIIIIAIIL(S 2

END

lEO 3OUTPUT CALLS
PibqTl,P

END

lED XNO OF DATA

| SPACE NQOE

$ UOIATION TO SPICE

10001 " NEV

10002 "- 1

1_X)3

10004

10005

10O06

10007

1O008

1O009

10010

10011

10012

10013

10014

I001S

10016

10017 " N( u

10018

10019

1OO2O

10021

10022 " N(_

10023 * NEW

10C24 *- 2

IOOZ8 * NEW

10028 " N_

10O27

10028

10029

I00)0

10031

10032

10(]33

100,34

10038

.f

FIGURE 4-3: SAMPLE INPUT CARDS AND PRINTOUT FOR EDIT OPTION 2

4-11



INPUT CARDS

Input Contro I Card

©

PRINTOUT

51Nr'.A - TAPE INPUT (EDIT)

11011'OPTION 3 WASHEN SPECIFIED

FIGURE 4-4: SAMPLE INPUT CARDS AND PRINTOUT FOR EDIT OPTION 3

4-12

r_ ,



INPUT CARDS
? 4

• 10(201, +0001

DCD 31'MERK4W. LPCS

-10OI6

OTIIqEI • .25, m.00P • _, I_XCA • .I
- 10021,100Z2

t OliqENSION X(IO0)
F NOlP+ • 100

- 10024,10024

CSG_4P

CNFld6K

PRINTOUT
SINOA - TAPE INPUT ((flfllT)

EDIT OPTICII 4 HAS 8((11 SPECIFIED

THE FOLLOWING EDIT CHANG[S HAVE SEEN SPECIFIED

-I0001,10001

IICO )THERMAl. LPCS

-10016

01'114(I • .2S. NLOOP • 2Q. DRLXCA • .l

- 10021,10022

F OlM(NSION *(100)

F flOllq • 100

-10024,10024

CSGOI_P

SINOA INPUT DECK LISTING _ITH EDIT LINE NUMIB(R$

O I 2 ) 4 S 6 7 8

12 $ 4_6 i_ _ _ 34 _ 7 _9_12 3 _ _ 6 6 8_ _2 34 _ 7 _9_1?_ 3 4 t+67 800 _.2 34 _6 _i_9_ __ 3 _ _ 7 89_12 3 4 _ 7 _9_

ICD )T_E_PW. L_S

|CO 9 SAMPL( THERWLL NETMOliK

(nO
KD :_OG( (_TA

I °70..0.21 ,Z.?O..0.21.3.10..0.21 .;.

-iO,-440.,1.0 S

(NO

KO )SOUSE 0atA

1..SS

IIz'D 3COHDUCTOll DATA

1,1,2,1.9(-),2,2,),1.9(-) $

- I0.),10,8.6(-I0 $

(NO

KO )CONSTANTS DAtA

TIM(HO.IO0..OUTPUT,10+ .DTMPCA, IO. $

0TIH(I • .25. HL00P • 20. 0RLXCA • .1

(NO

KO 3AImAV 0ATA

EnD

DCO )EXECUTION

F DIMENSION x(100)

it HOlM • 100

Ir NTH • O

CSG0_

c.qFwIK

END

ICO )VARIAIK(S I

(NO

IICO 3VARIAIILES 2

(NO

ICO 3OUTPUT CALLS

PRNTMP $

END

KO XNO OF OATA

SPACE 1400(

;L4DIATIOfl TO SPACE

IO001 * 'l[u

10002 *- I

10003

I(1004

1"JOOS

10006

10007

1OOO8
100O9

"10010

10011

10012

11)0;)
10(114

1001_
110016

10017 * :z£,,+

10018

10019

10020

10021

10022 * _W

10023 * N(W

10024 *- 2

1002S * 'lEVI

10026 * _(W

10027

10028

10029

10030

100)1 •

10032

10033

10034

10035

FIGURE 4-5: SAMPLE INPUT CARDS AND PRINTOUT

4-13

FOR EDIT OPTION 4



4.4.2 Store/Recall Option

The Store/Recall Option provides the capability for storing and

retrieving complete sets of processed data blocks. This option has no

effect on the operations blocks. As a result, it is appropriate to use

the Store/Recall option for multiple-run problems which require only (1)

changes to the data blocks(via the Parameter Runs capability), (2) pauses

in the course of solving a problem, for the purpose of examining inter-

mediate results before proceeding, or (3) both changes and pauses.

To "store a problem" means to write to a file the current value

of each element in the processed data tables (i.e., temperatures, capaci-

tances, sources, constants, arrays, and conductances), along with the

pseudo compute sequences, and the tables of actual vs relative numbers.

Clearly, this list includes all of the data necessary to define the current

state of a problem. A problem may be stored by using the following sub-

routine call at any point in any of the operations blocks:*

I

2

STOREP(id)

where: id = reference to a _ser constant which contains a unique

Hollerith word to be used to identify this problemon
the storage medium

This subroutine will "store a problem", as defined above, on the Store

Data Tape, each time it is called. If subroutine STOREP is called more

than once, special care should be taken to insure that each call refers

to a unique id, so that each stored problem may be recalled, if desired.

The call to STOREP preserves the processed data blocks, in their current

state, on the Store Data Tape, but the operations which operate on this

data must be saved by a different procedure - namely, the user must arrange

to save the Processed Program Tape (which is usually assigned to a scratch

file), which contains subroutine EXECTN, VARBLI, etc., in symbolic form.

*Subroutine STOREP requires an amount of dynamic storage core locations

equal to the maximum value among the set of values: [NNT,NGT,NCT,NAT].

These values are described in Section 3.4.4.3 under the subject of
Problem Size Parameters.

4-14

C>

,.. r



i

To Recall a problem, the user must supply a Recall Data Tape and

a corresponding Processed Program Tape. The Recall Data Tape will, of

course, be the Store Data Tape created during a previous run. In other

words, LOGICALLY, problems are stored on the Store Data Tape, and recalled

from the Recall Data Tape; PHYSICALLY, the file or tape assigned to the

Store Data Tape for run X is assigned to the Recall Data Tape for run X+l.

The user is cautioned to realize that one of the subroutines on

the Processed Program Tape contains a call to subroutine STOREP. This

call, as well as any "one-time-only" operations may be avoided in recalled

runs by including appropriate logic in the original problem. In particular,

problems which will be recalled should avoid repeating the pre-solution

operations in the EXECUTION block (e.g., a recalled problem should not

attempt to scale data which was scaled in the original problem).

Since the subroutines on the Processed Program Tape are in

symbolic form, the system FORTRAN compiler must be called, with the appro-

priate control cards,* to recompile them before a recalled program can be

executed. System facilities for updating program files may, of course,

be applied to the Processed Program Tape to effect program (as opposed to

data) changes. However, since these facilities are system dependent, the

user should view the Store/Recall option as primarily suited for saving

and retrieving the data blocks associated with a given problem (or program).

A problem is Recalled by specifying its identifying Hollerith

word on the INPUT CONTROL card, as follows:

where:

1
! 3

RECALL HoZler/th-n,_e

_ollerith-name = the unique Hollerith word which identifies

the desired set of data blocks.

*The control cards are the same as those normally used when an input deck

is entered originally with cards.

4-15



/

For example, suppose that user constant number 20 contains the Hollerith

data value 'RUNTWO' and the problem store subroutine is called in the

EXECUTION block as follows:

!

2

+

STOREP(K20)

This call will cause the current contents of the data tables to be written

to the Store Data Tape. Further suppose that, on the following day, the

user wished to recall this problem. Assuming that the Processed Data Tape

from the previous day was saved, and the Store Data Tape is reassigned as

the Recall Data Tape, then the following INPUT CONTROL card will cause the

desired problem to be recalled to the preprocessor:

I 3

+ +

RECALL RUNTWO

The INPUT CONTROL card must be followed by at least one INITIAL

PARAMETER run deck (see Section 4.4.3), which, in turn, may be followed by

any number of additional INITIAL or FINAL PARAMETERS run decks. In other

words, the recalled program will not be executed as is; it serves only as

the "initial" problem base for parameter runs. Of course, the user can

always force the recalled program to be executed "as is" by simply specify-

ing an INITIAL PARAMETERS run which actually changes no parameters (i.e.,

the resulting parametric case will be identical with the recalled case).

The examples in Section 4.4.3 will help to clarify these points.

4.4.3 Parameter Runs

The parameter run capability offers the user a convenient means

for performing parametric analyses which do not require alterations to the

thermal network or the operations blocks. Only data values such as title,

temperatures, capacitances, conductances, constants, and arrays may be

changed.

4-16



!

The SINDA preprocessor will accept two types of parameter runs:

INITIAL and FINAL. Any INITIAL PA_ETERS run always uses the processed

data blocks from the original problem as the baseline dataupon which

changes are made. The "original" problem may be input in the same deck,

preceding any parameters runs, or it may be recalled from the Recall Data

Tape. A FINAL PARAMETERS run always uses the processed data blocks which

currently reside in core memory as the baseline data.

Even though a problem might have been stored (using subroutine

STOREP) at the logical end of the calculations, the data blocks thus saved

are always considered to represent, upon recall, the initial state of the

problem. Hence, the first parameter run which follows an INPUT CONTROL

card on which the Recall option is used must be an INITIAL PARAMETERS run.

Succeeding parameter runs will refer to (1) the recalled problem, if they

are INITIAL runs, or (2) the just-completed problem, if they are FINAL

runs. The recalled problem, itself, is never re-executed; only parameter

runs based upon it are executed.

If, on the other hand, the Recall option is not specified, then

the "original" problem deck is expected to precede any parameter run decks.

The data tables produced by the preprocessor from this original problem

deck will be used as the baseline for any INITIAL PARAMETERS runs which

follow it. Since FINAL PARAMETERS runs refer to the problem just completed,

if the first parameter run to appear in a deck is a FINAL run, then this

run will refer to the state of the data blocks for the original problem

after it has been executed. In other words, when the original problem is

input in raw form from cards (as opposed to processed form from the Recall

Data Tape), the original problem is actually executed before proceeding to

any parameter runs.

A parameter run deck possesses the same skeleton structure as

the regular SINDA input deck, with the following exceptions:

I) The Problem Specification Card must take one of the following
forms:

4-17



2)

3)

4)

S)

!
8 2

BCD 3INITIAL PARAMETERS

BCD 3FINAL PARAMETERS

A "complete" parameter run deck will include the TITLE,

NODE, CONDUCTOR, CONSTANTS, and ARRAY DATA blocks only.

If no changes are to be made to the NODE, CONDUCTOR, CON-
STANTS, or ARRAY DATA block, then the header card and END

card for this block may be deleted from the parameter run

deck. However, if the ARRAY DATA block is deleted, then

the following card must be used in its place:

I

8 2

BCD 3END PARAMETER RUN

When the Recall option is used, all parameter run decks are

placed between the INPUT CONTROL card and the END OF DATA
card.

When the Recall option is not used, all parameter run decks

are placed between the END-_ard of the OUTPUT CALLS block
and the END OF DATA card.

The data blocks in a parameter run are used to chan_e data, not

to define it. Hence, the actual number for any element mentioned in a

parameter run must appear in the original problem. In addition, any array

mentioned in a parameter run may contain no more data values than the

number in the original array. Only the standard (3-blanks) and 'BCD'

options may be used to specify data changes. The format of the cards in

a particular parameter run data block is the same as the format for the

cards in the corresponding original data block, with the exception of

conductor data cards. Because changes to the network (e.g., connections)

may not be made, it would be pointless to re-specify the NA, NB pairs.

Hence, conductor data changes are specified with only two data values:

the actual conductor number, G#, followed by the conductance value, G.

As stated above, in the comments concerning the skeleton struc-

ture of a parameter run deck, a particular data block need not be present

if it contains no data changes. The TITLE BLOCK, however, must

4-18



f

always be present, and, at the minimum, include a problem specification

card and an END card. Since the ARRAY DATA block is the last data block

in the deck, the BCD 3END PARAMETER RUN card need not be present, unless

the ARRAY DATA block i_ absent.

Figures 4-6 and 4-7 illustrate the usage of the Parameter Runs

feature, without and with the Store/Recall feature.

4.5 INTRODUCTION TO THE SINDA LIBRARY

4.5.1 Basic Conventions

The SINDA library is a large collection of subroutines designed

to be compatible with the SINDA system. These subroutines cover a wide

variety of subjects and permit the user to construct SINDA operations

blocks with a minimum of programming knowledge.

The description and calling sequence for each subroutine is

given in Section 6. However, introductory remarks and general Osage

recommendations are included at this point, with the intent of giving

the neophyte user some insight into the scope of the available routines,

as well as identifying those routines and associated techniques which

enjoy frequent usage in real engineering applications. Experienced users

should also find these comments helpful in that they will point out certain

economies and techniques which were not possible with the old CINDA-3G

system. Consider interpolation subroutine DIDIDA. Its calling sequence

is as follows:

D1DlDA (XjAX(IC),AY(IC)_ Y)

where: X = independent variable

AX = singlet array for independent vcc_iable (aecend_ng order)

AY = eingle_ array for deperu_nt variable

Y = dependent variable

It will be noted, first, that there are no card column designations. The

user should, by this time, realize that the subroutine may be requested

on a SINDA type operations card, or it may be "CALLED" in a FORTRAN state-

ment. Next, it will be seen that the descriptions of the arguments are

rather terse and make no explicit mention of arithmetic type or permissible

4-19



F 48

!
8 2

t. ¢.

$ INPUT CONTROL CARD
BeD 3THERHAL SPCS

BCO 9 SAMPLE PROBLEM A (ORIGINAL PROBLEM)
ENO
8C0 3NODE OATA

1, 70.0, 1.0
Z, 80.0. 6.0
-3, 100.0, 1.0 $ BOUNDARYNODE

END
BCD 3SOURCE DATA

1, K8
END
BCO 3CONDUCTORDATA

10, I. 2. 0.01
15, Z. 3, 0.018

END

BCD 3CONSTANTS DATA
TIMENO - 10.0. OUTPUT • 1.0
4 • 100, 8 - O.S, 12 - RUNONE

END
BCD 3ARRAY 0ATA

7, 0.0, 1.0, 20.0, 8.0, END
END
BCD ":.EXECUTION

OIMENSION X(30)
NDIM • 30
NTH • 0

CNFRWO

IF ( Ka .EQ. 0 )
STOREP(KI Z)

CONTINUE
END
BCO

ENO
BCO
END
BCD

ENO
BCO
BCD
ENO
BCO

ENO
BCD

END
BeD
BeD
BCD
ENO
BeD
REM
ItEM

END
BCD
8C0

GO TO 48

3VARIABLES I

D10EG1(TIMEM,AT,C1)

3VARIABLES 2

3OUTPUT CALLS
PRNTMP

3INITIAL PARAMETERS

9 SAMPLE PROBLEM B

3NOOE DATA

-3, ZOO.O, 1.0 $ CHANGE 801JNDARYTEMPERATURE

3CONSTANTS DATA
12 • RUNTWO $ CHANGE STOREP ID

3END PARAMETER RUN
3FINAL PARAMETERS

9 SAMPLE C - PICKS UP AT END OF PROBLEM 8

3CONSTANTS DATA

START TIME FROM RUN B NON EQUALS TIMENO
THEREFORE, EXTEND TIMEND.

TIMENO • 20.0 $ THIS PROBLEM WILL RUN FROM 10.0 TO ZO.O
4 = 0 $ PREVENT STOREP-ING OF THIS RUN

3ENO PARAMETER RUN __
3END OF OATA

$ TIME VARYING CAPACITANCE - NODE i

©

©

FIGURE 4-6: ORIGINAL PROBLEM FOLLOWED BY PARAMETER RUNS

L_

4-20



!

8 2

I. <,

RECALL RUNTWO
BCD 3INITIAL PARAMETERS
8C0 9 SAMPLE PROBLEM D
8C0 9 THIS IS EXACTLY THE S_ME AS PROBLEM C
END
BOO 3CONSTANTS DATA

TIHEND • 20.0, 4 - 0
END
BCO 3END PARAMETER RUN
8CD 3INITIAL PARAMETERS
8CD 9S/_PLE PROBLEM E
END
8C0 3CONDUCTORDATA

15, 0.0]4 $ CHANGE CONDUCTANCEOF CONDUCTOR 15
END
8C0 3CONSTANTS DATA

TIHENO • 20.0, 4 • 0
END
BeD 3ARI_Y DATA

7, 10.0, 1.0, 30.0, 8.0, END
(NO
8CD 3END OF DATA

FIGURE 4-7: RECALLED PROBLEM USED AS BASELINE FOR PARAMETER RUNS

4-21



reference forms. Arithmetic type is always implied by the first letter of

each formal dummy argument. Letters I through N, inclusive, imply integer

arguments; all other letters imply floating point arguments. If an argu-

ment'must be of Hollerith type, this fact will be stated explicitly. For

each formal argument, the user must supply an actual argument which may be

a literal data value or a reference form or identifier which is associated

with a location which contains a data value, of the indicated type. For

example, DIDIDA requires two simple arguments, X and y, which must be of

_ype. floating point. Arguments which represent arrays are indicated by

suffixing the formal argument with a parenthesized ZC or Ov. IC indicates

that the argument supplied by the user mus___t_,be an array reference of the

integer-count form. DV indicates that the argument supplied by the user

may be an array reference of the data-value form, or, in general, any type

of reference which is associated with the starting location of a sequence

of data values. For examp]e, DIDIDA requires two arrays, AX and AY, which

must contain floating point numbers and whichmust be supplied as references

of the form: An, where n = array number.

When several similar subroutines are described, the formal des-

cription of similar arguments will be deleted. For example, consider sub-

routine DIIDAI. This routine performs single variable linear interpolation

on an array of X's to produce an array of Y's. The number of input x's

must be supplied separately as the argument N and must agree with the

number of output I's. The calling sequence is as follows:

DIIDAI (N,X(DV),AX(IC),AY(IC),Y(DV))

It should be clear, from the basic action of the routine and the description

of the arguments for DIDIDA, that the required arguments for DIIDAI are as

follows:

N = Number of values in X and Y arrays (integer).

X = Array of input values of the independent variable.

AX =Singlet array of X's in ascendingorder (integer count form).

AZ =$inglet array of YWs corresponding to the Xts in AX (integer

count form).

Z = Array of output values of the dependent variable.

©

4-22



Obviously, DIIDAI is equivalent to _/ calls on DIDIDA. If these things are

not obvious, the user should not become alarmed. Rather, he should recog-

nize that ease and confidence in understanding ar.d using the more complex

roul_ines in the library come only after experience is gained in using the

simpler ones.

As another example, consider subroutine SUMARY. Its calling

sequence is as follows:

SUMARY (N,A (DV)_Y)

N

Action: Y =_Ai

i=l

Often, as shown above, a short formula or similar mathematical

representation of the action of a subroutine will be specified in lieu of

describing each argument explicitly. The formal argument N indicates that

an integer argument must be supplied by the user, and the formal argument

7, together with the formula, indicates that the result will be returned

to this argument as a floating point value. Any symbolic reference form

which is associated with the starting location of the desired array of

values may be supplied as argument A.

To relieve the user of the tedious task of backtracking through

nested subroutines, the total dynamic storage required by each subroutine

is stated in each writeup, along with the nested routines, if any, respon-

sible for the requirement. In this manner, certain economies may be

effected by searching for duplication in the lists of nested routines,

but, if ample storage is available, the user may simply sum the stated

requirements for those routines which he specifically calls.

In contrast to the usual FORTRAN convention, several library

subroutines (e.g., ADD and ADDFIX) will accept a varying number of argu-

ments. The total number of arguments included in any single call to one

of these routines should not exceed 32.

4-23



4.5.2 Execution Subroutines

These routines are called "Execution Routines," because they are

generally called from the EXECUTION block. They operate on the network

defined by the Pseudo-Compute Sequence, and usually call VARIABLES l,

VARIABLES 2, and OUTPUT CALLS automatically. Thus, these routines form

the core of most THERMAL type problem solutions. This section contains

two classes of routines: (1) network solution, and (2) network output.

The network solution routines offer a wide variety of algorithms

for determining the transient or steady state solution of a thermal prob-

lem. Each routine is described, briefly, in Section 6.2. A more elaborate

discussion may be found in the Engineering Program Manual. s For simple

problems, however, the user will find that subroutine CINDSS will suffice

for steady state calculations and subroutine CNFRWD will produce excellent

results for transient analyses. The other steady state routines do not

differ greatly from CINDSS, since they all seek the roots of the equation:

Q_-f_(l)

where: Q = Heat rates

T = Temperatures (of nodes)

(i.e., the steady state temperatures T_', satisfy Q = f (T_') = O)

Several of the other transient analysis routines, however, differ consid-

erably from CNFRWD in the technique of formulating the finite differencing

equations. The basic equation used for all transient analyses is as

follows: (neglecting impressed Q's)

T_new = T_old + Z (_*Tnew, (l-_)*Told)

where: _ = Weighting factor

0<;_<I
m

©

CNFRWD uses a formulation where the parameter _ = O. This method is called

"explicit forward differencing." In formulations where x_O, it will be

seen that Tnew appears on the left and right hand side of the equation.

Clearly, these methods require an iterative solution with respect to T_new

(as well as time). Hence, formulations with _#0 are called "implicit"

solutions. When _=l, the formulation takes the generic name of "implicit

4-24



backwarddifferencing." For convenience, the following list relates the

various descriptive terms applied to finite differencing formulations to

the corresponding value of _ .

X=O : Explicit

k#O : Implicit

k=O : Forward

_=I : Backward

_=.5: Forward-backward

The network output routines serve, basically, as a means for

converting the Pseudo Compute Sequence back into an orderly presentation

of the thermal network which it represents. The basic routine, CSGDMP,

provides a listing which shows the capacitance, stability factor (C/xG),

connecting conductors, and adjoining nodes for each node in the network.

4.5.3 Arithmetic Subroutines*

Many of the subroutines which perform arithmetic on simple

variables are now obsolete due to the addition of the M-type statement

to the reperteire of SINDA operations. While the neophyte user may be

reluctant to trywriting "FORTRAN (I) statements," and the experienced

user may find himself irretrievably habituated to the use of SINDA sub-

routines, both should recognize that M-type statements are 3 to lO times

faster to execute than are subroutines which accomplish the same operation,

Hence, the use of M-type statements can result in a considerable saving

of computer time.

On the other hand, the subroutines which perform arithmetic on

arrays will generally be much easier to use and about as fast as corre-

sponding DO-LOOPS constructed of F- and M-type statements.

/"

*Section 6.3 contains a detailed description of each of these routines.

4-25



4.5.4 Interpolation Subroutines

Section 6.4 includes a large variety of interpolation routines.

Analytically minded users might, at first, shun the concept of approxi-

mati'ng smooth curves with a series of straight lines. However, since

SINDA is built around discretized variables, interpolation is the method

of choice for evaluating time or temperature dependent properties and

single or multi-variable functions.

Though parabolic interpolation is also available, basic linear interpolation,

(Y2-Yl)

Y - Yl + (X-Xl)
(x2-x I)

serves the great majority of user's needs. It is available in two ele-

mentary forms: subroutine DIDEGI, which requires one doublet array of

(xi,Yi) ordered pairs, and subroutine DIDIDA, which requires two matching

singlet arrays, one containing values of xi and the other containing

corresponding values of Yi" Obviously, if the user must approximate

several dependent variables over roughly the same domain of a single

independent variable, then the use of subroutine DIDIDA, along with its

associated array structure, will be preferred.

4.5.5 Mathematical Solution Routines*

This group of subroutines includes algorithms for integration,

polynomial evaluation, and finding roots, in addition to the basic trig-

onometric, exponential, and logarithmic functions. As was the case for

many arithmetic subroutines, SINDA library subroutines for evaluating

transcendental functions of single variables can be replaced, with added

efficiency, by M-type statements referencing the corresponding FORTRAN

library function. However, the SINDA subroutines which evaluate a function

for an array of independent variables will be found to be easier to use

than FORTRAN DO-LOOPS which accomplish the same operation.

U

/ •

*These routines are described in Section 6.5.

4-26

rh



(

4.5.6 Matrix Subroutines*

This group of routines provides the user with a comprehensive

set of matrix operations compatible with the SiNDA data format. The user

will" find these routines of limited use in THERMAL problems, but their

convenience and internal compatibility encourages their use in GENERAL

problems.

4.5.7 Output Subroutines

Section 6.7 includes most of the routines which the user will

ever need to construct his OUTPUT CALLS block. For transient thermal

analyses, the most popular output routine is PRNTMP, which, among other

things, prints the temperature of each node in the network. In addition

to printing, punching, and writing values to files, this section of the

library also contains a plot package for the SC-4060 film plotter.

Since plot packages for specific peripheral devices tend to be,

or become, system dependent, a new plot routine, PRNPLT, has been written.

This routine is written entirely in FORTRAN, making it independent of the

host computer, and will print out a plot of data on any line printer. The

plots produced by PRNPLT are necessarily coarsely quantized, but they have

the advantage of not imposing any delays on the user for such off-line

operations as plot tape processing, film developing, etc.

4.5.8 Application Subroutines

Section 6.8 includes subroutines devoted to specific applications

in the general areas of radiant energy interchange, phase change, and fluid

floW.

*These routines are described in Section 6.6.

4-27



4.6 ADVANCED CONTROL CONSTA_!T USAGE

The various SINDA control constants may be divided into three

operational groups, as follows:

I. Dummy control constants

2. Program-calculated control constants

3. User-specified control constants

Dummy control constants may be used in any manner desired by the

user. They are particularly advantageous in that they may be used with

equal convenience in all three types of SINDA operations. The following

are dummy control constants:

ITEST,JTEST,KTEST,LTEST,MTEST

RTEST,STEST,TTEST,UTEST,VTEST

Program-calcuiated control constants contain values output by

the network solution routines as results of the heat transfer calculations.

They may be examined by the user at his discretion and may be used as

criteria for controlling the operations in the VARIABLES l, VARIABLES 2,

and OUTPUT CALLS blocks. The following list shows the names of the

program-calculated control constants:

ARLXCC,ATMPCC,CSGMAX,CSGMIN,CSGRCL,

DRLXCC,DTIMEU,DTMPCC,ENGBAL,LINECT,

LOOPCT,LSPCS ,NARLXC,NATMPC,NCSGM ,

NDTMPC,PAGECT,TIMEM ,TIMEN ,TIMEO .

User-specified control constants are used to influence the

calculations that are internal to the network solution routines. The

following list shows the names of the user-specified control constants:

ARLXCA,ATMPCA,BACKUP,BALENG,CSGFAC,

CSGRAL,DAMPA ,DAMPD ,DRLXCA,DTIMEH,

DTIMEI,DTIMEL,DTMPCA,LAXFAC,NLOOP ,

NOCOPY,OPEITR,OUTPUT,TIMEND,TIMEO .

4-28

L9



Control constant NOCOPY is used only by the matrix routines add is de-

scribed, where appropriate, in Section 6.6. Control constant CSGRAL is

not presently used by any routines. Before the user can fully appreciate

the utility of the remaining user-specified control constants, he must be

familiar with the flow charts shown in Figures 4-8, 4-9, and 4-I0.

Figure 4-8 shows the general flow for explicit routines for each

time step. Clearly, the arithmetic nodes will receive an iterative solu-

tion, which terminates when ARLXCC _ ARLXCA, if NLOOP is greater than I.

On the other hand, Figure 4-9 shows that the implicit routines solve the

entire network iteratively for each time step. In addition, the implicit

routines also check for DRLXCC _ DRLXCA before terminating the loop. Both

classes of routines, however, performchecks on the maximum temperature

change permitted during the entire time step and reduce the time step

and repeat the calculations if the checks fail. Since the steady state

routines do not operate with respect to time, they simply iterate until

the relaxation criteria, ARLXCA and DRLXCA, are satisfied or until NLOOP

iterations are performed.

In practice, the RELAXATION criteria are specified in terms of

temperature-change per iteration, and the TEMPEraTURE CHANGE criteria are

specified in terms of temperature-change per _ime-step. If the former are

not satisfied, then further iterations, up to a maximum of NLOOP, are

performed. If the latter are not satisfied, then the time step is shortened

and the calculations are repeated.

The points above will prove useful in understanding the following

discussions of the individual, user-specified contro| constants. Figure 4-1i

summarizes the constants used by the various network solution routines and

shows the default values assigned to each if they are not specified by the

user.

/,

4-29



SOLVE
DIFFUSION NODE

NETWORK

SHORTEN TIME STEP DTHPCC> DTHPCA

LOOPC'f • 0

LOOPCT " LOOPCT+ 1

YES

YES

LOOPCT• NLOOP

NO

SOLVE
ARITHMETIC NODE

NETWORX

ARLXCC • ARLXCA

ATMPCC• ATHPCA

CALL OUTCAL OPEITR - 0

YES

,Z.J

FIGURE 4-8: BASIC FLOW IN EXPLICIT ROUTINES DURING EACH TIME STEP

4-30



LOOPCT• 0

LOOPCT- LOOPCT+ 1

LOOPCT • NLOOP YES

SOLVE NETWORK

ARLXCC • ARLXCA

#

i,
DRLXCC• ORLXCA

SHORTENTIME STEP OTHPCC• DTMPCA

YES
ATMPCC• ATMPCA

CALL OUTCAL OPEITR - 0

FIGURE 4-9: BASIC FLOW IN IMPLICIT ROUTINES DURING EACH TIME STEP

4-31



YES

CALL OUTCAL

NO

OPEITR = 0

YES

YES

LOOPCT - 0

LOOPCT = LOOPCT + 1

LOOPCT • NLOOP

SOLVE NETWORK

ARLXCC • ARLXCA

DRLXCC • ORLXCA

YES

L FIGURE 4-I0: BASIC FLOW IN STEADY STATE ROUTINES

4-32



I

NANE STEADY STATE J EXPLICIT TRANSIENT i IMPLICIT TRA'NSIENT

CINDSS CINOSL CINDSM CNFRWD_ CNFRDL I CNFASTj CNEXPN C,_JFRI CNQUIK I CNBACK CNFWBK'] CNVARP.

ARLXCA A A A I.E*8 I.E+8,I l.E÷e ).E+_ I.E+8 1.E+8 A A !. A

ATNPC.A I.E*8 I.E+8 J I.E+8 I.E+8 I.E+8 I.E+8 I.C+S [ 1.E+8
I

BALE_ R I

CSGFAC 0 1.0 1.0 I. O' I

I

1. 0 1.

OAMPA 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ! 1.0
i

DANPD 1.0 1.0 1.O 1.0 l.O I 1.0ORLXCA R R R R R R

OTIMEH 1.E+8 1.}'+8 1.E+8 1.E+8 1.E+8 1.E+8 I.E_'8 I'E+8 I 1.E+8

DTIMEI R R J R
!

OTIMEL 0.0 0.0 R 0.0 0.0 0.0 J

OTMPCA I.E+8 I.E+8 1.E+Si I.E+8 1.E+a l.E+a I.E+8 I I.E+8

LAXFAC R JNLOOP R R R 1 1 I l 1 1 R n R

R R R R R R i R
;_TIMENO I R R R R R R R R I R

TZMEOI 0.0 O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0
i

_cKupI o.o o.o o.o o.o o.o o.o o.o o.o
i .,

OPEITR 0.0 0.0 0.0 0.0 O.O 0.0 0.0 O.O 0.0 0.0 , 0.0 J 0 0

NOCOPY NOT USED BY, NETWORK SOLb'TION ROUTINES

R - REQUIRED; A - REQUIRED ONLY WHEN ARITHMETIC NODES ARE PRESENT; OTHER VALUES ARE DEFAULT VALUES.

FIGURE 4-II: USER-SPECIFIED CONTROL CONSTANTS REQUIRED

BY NETWORK SOLUTION ROUTINES

ARLXCA (A11owable Arithmetic Node Relaxation Temperature Change)

This control constant must be specified for the implicit routines

and for the steady state routines, except CINDSM, if any arithmetic node

is present. For the explicit solution routines, ARLXCA may be optionally

specified; if not specified, ARLXCA is set to I.E+8. ARLXCA represents

a temperature convergence criterion for the arithmetic nodes during each

iterative calculation. It is used in conjunction with control constant

NLOOP. Satisfaction of either NLOOP or ARLXCA during any iterative step

terminates the arithmetic node temperature calculations for that time-step,

with computation proceeding to the next one. A typical ARLXCA value is

0.01, but its value is dependent upon the magnitude of expected tempera-

tures. The 0.01 value tries for fifth place accuracy for temperatures in

4-33



the hundreds; an ARLXCA value of 0.0001 would try for seventh place accu-

racy. The computer only holds about 7-I/2 places so attempting an accuracy

of eight places or more will always result in NLOOP iterations being per-

formed.

ATtiCA (Allowable Arithmetic Node Temperature Change)

This control constant may be optionally specified by the user

for the implicit routines and for the explicit routines except CNFAST.

If not specified, ATMPCA is internally set at l.E+8. ATMPCA represents

an arithmetic-node temperature change criterion during one time-step. It

is compared to the calculated temperature change which is stored in control

constant ATMPCC. If ATMPCC is greater than ATMPCA, the time-step, At, is

shortened to

at = .g5 *At (ATMPCA/ATMPCC)

and the node temperatures are re-set to their former values. The compu-

tational procedure is then repeated with the smaller time-step. Specifica-

tion of ATMPCA prevents a rapid temperature change between time-steps, with

the value to be specified dependent upon the problem. Thus, the user

should estimate the number of time-steps and the maximum range of tempera-

ture in order to arrive at a reasonable value. For typical spacecraft-type

thermal problems, an ATMPCA of about lO°F has been found reasonable.

BACKUP (Backup Switch)

Control constant BACKUP provides the SINDA user with the means

for utilizing any thermal, numerical solution subroutine as a predictor

program. All of the numerical solution subroutines set control constant

BACKUP to zero just prior to the call on VARIABLES 2. Then, immediately

after the return from VARIABLES 2, a check on BACKUP is made. If BACKUP

is nonzero, all temperature calculations for the just completed time-step

are eliminated; the old temperatures (temperatures calculated at the

previous time-step) are placed in thetemperature locations;and control

is routed to the start of the computational sequence.

0

%_. t/

4-34



It should be noted that the user must provide the necessary

criterion and check in VARIABLES 2 if the iteration is to be repeated.

Thus, if the iteration is to be repeated, BACKUP must be nonzero and a

criterion that can be met in the next pass must be established.

In some routines, BACKUP is also checked after the return from

VARIABLES I. However, for the present, this use should be ignored since

the BACKUP check after VARIABLES l is planned for future additions of

special boundary calculation subroutines.

BALENG (User Specified System Energy Balance)

This control constant is presently usedin the steady state

routine CINDSM but not in the other SINDA numerical solution routines.

BALENG must be specified, otherwise the "run" is terminated with an error

message printout. The value of BALENG is a criterion that represents an

acceptable net energy balance (energy-in minus energy-out) of the system

in the calculation of steady state temperatures. A value for BALENG

depends upon the magnitude of energy (Q) under consideration. As a guide-

line, I/2% of the total energy into the system (including heat flow from

the boundary) is a reasonable value.

CSGFAC (Time Step Factor)

This control constant may be optionally specified by the user

for all explicit routines except CNFAST. It provides the user with some

degree of control over the computed time-step. CSGFAC is not specified,

or if it is specified to be less than one, it is internally set at l.O.

For subroutines CNFRWD and CNFRDL, which are conditionally stable, CSGFAC

is a time-step divisor; a value of CSGFAC greater than one is used to

obtain higher accuracy. For subroutines CNEXPN, CNDUFR and CNQUIK, which

are unconditionally stable, CSGFAC is a time-step multiplier; a value of

CSGFAC greater than one is used to decrease the computational time required

for a problem. A value of CSGFAC less than one is not allowed for CNEXPN,

CNDUFR,and CNQUIK because it is more accurate to use CNFRWD (or CNFRDL) if

a time-step smaller than the one associated with CSGFAC equal to one is

desired.

4-35



DAMPA (Damping Factor for Arithmetic Nodes)

This control constant may be optionally specified for all of the

SINDA numerical solution routines; if not specified, or if specified to be

_0.0_ DAMPA is set to l.O. In the development of the finite difference

expressions as reported in technical •literature, little (if any) mention

is made about the so-called damping factor. The damping factor does

nothing more than to allow a certain fraction of the "old" temperature

(temperature at the previous time-step or iteration) to be included as

part of the temperature change for the current time-step or iteration.

This procedure tends to force divergent or oscillating problems towards

convergence. The value to be used is dependent upon the problem and to

some extent upon the routine. Typically, a value of .5 is used but a

value as small as .Ol has been used with CINDSL for a themal radiation-

dominated problem. In general, a choice for DAMPA becomes a trial and

error procedure. The use of DAMPA, ARLXCA, and NLOOP are recommended when

radiation conductors are connected to arithmetic nodes.

DAMPD (Diffusion Node Damping Factor)

This control constant may be optionally specified for the implicit

and steady state routines; if not specified or if specified to be _O.O,

DAMPD is set to l.O. DAMPD serves the same purpose for the diffusion nodes

as DAMPA provides for the arithmetic nodes. Its use is recommended for

networks which are dominated by radiation heat transfer.

DRLXCA (Allowable Diffusion-Node Relaxation Temperature Change)

This control constant must be specified for the implicit routines

and for the steady state routines except CINDSM. DRLXCA serves the same

purpose for the diffusion-nodes as control constant ARLXCA does for the

arithmetic nodes. Thus, the discussion on ARLXCA holds equally true for

DRLXCA. Separate relaxation criteria for diffusion and arithmetic nodes

are available because they provide greater computational flexibility and

facilitate the coupling of two distinct networks.

0

4-36



DTIM_H (Maximum Time-Step Allowed)

This control constant may be optionally specified for the explicit

and the implicit routines. DTIMEH represents the maximum time-step allowed

during the computational process. If DTIMEH is not specified, DTIMEH is

set to l.OE+8.

DTIMEI (Specified Time-Step for Implicit Routines)

This control constant must be specified for the implicit routines

and is not used by the other routines. If not specified, the "run" termi-

nates with an error message printout. DTIMEI represents an arbitrary time-

step, but the governing criteria should be minimum computational time with

satisfactory temperature accuracy. This means that DITMEI should be

specified in conjunction with control constant NLOOP which represents the

number of computational iterations during each time-step. Since each

iteration calculation is essentially equivalent to a time-step calculation,

DTIMEI should normally be greater than NLOOP*CSGMIN, where CSGMIN is the

time-step used in the explicit routines. If savings in computational time

cannot be met with the same accuracy by using the implicit routines, it is

more reasonable to use the explicit routines.

DTIMEL (Minimum Time-Step Allowed)

This control constant must be specified for subroutine CNFAST and

is optional for other explicit solution routines. If not specified for

CNFAST, the "run" terminates with an error message printout. DTIMEL rep-

resents the minimum time-step allowed. For all the explicit routines

except CNFAST, if the calculated time, step is less than DTIMEL, the "run"

terminates with an error message printout. For subroutine CNFAST, if the

calculated time-step of a node, as expressed by Ci/zGij , is less than

DTIMEL, the temperature of that node is calculated using the steady state

equations without computational iterations. The purpose of this control

constant for CNFAST is to shorten the computational time; the danger in

its use is that, with a large DTIMEL, a large number of diffusion nodes

will receive a steady state solution without iterations. As a result, the

temperature inaccuracies can be expected to be large.

4-37

i



/ DTMPCA (Allowable Diffusion Node Temperature Change)

This control constant may be optionally specified by the user

for the implicit routines and for the explicit routines except CNFAST.

DTMPCA represents a diffusion-node temperature change criterion between

one time-step and another. If the maximum diffusion-node temperature

change, which is stored in DTMPCC, is greater than DTMPCA, the time-step

is shortened to,

At = .95 *at (DTMPCA/DTMPCC)

and the temperatures are re-set to their former values. The computational

procedure is then repeated with the smaller time-step. DTMPCA serves the

same purpose for the diffusion nodes as control constant DRLXCA provides

for the arithmetic nodes.

LAXFAC (Number of Iterations for Linearized Lumped Parameter System)

LAXFAC is used only in the steady state routine CINDSM and rep-

resents the number of iterations to be performed on a network without

updating non-linear (e.g., radiation) elements. The system elements are

re-evaluated for the new set of temperatures, and, in turn, temperatures

are recalculated for another set of LAXFAC iterations. The total number

of iterations will not exceed the value of NLOOP, and, therefore, the

value of LAXFAC should be some fraction of NLOOP.

NLOOP (Number of Iteration Loops)

This control constant must be specified for the implicit and the

steady state routines; if not specified, the "run" terminates with an error

message printout. NLOOP may be optionally specified for the explicit

routines since it is used for the arithmetic nodes; if not specified, NLOOP

is set to I. The value of NLOOP to be used depends upon the problem and

the selected routine. For a steady state problem, it is not unusual to

have NLOOP equal to several hundred, whereas for the implicit routines

NLOOP should be specified as discussed for control constant DTIMEI. For

the explicit routines, a value of lO0, in combination with an ARLXCA value

of O.l, is usually adequate. In general, a trial and error procedure is

required to arrive at a suitable value of NLOOP.

C7

©

4-38



OPEITR (Output Each Iteration)

This control censtant serves as a switch thet controls the call-

ing of subroutine OUTCAL. If set nenzero, OUTCAL will be called at each

iteration, as shown in Figures 4-8, 4-9, and 4-]0, in addition to its

normal call at each OUTPUT time interval.

OUTPUT (Time Interval for Activating OUTPUT CALLS)

This control constant must be specified for all numerical solu-.

tion routines, except steady state routines, since the first time-step

used is generally set to OUTPUT. The input value is left to the judgment

of the user. Normally, the output interval is gauged by the length of the

run and the expected temperature response characteristics. As a "rule-of-

thumb" the output interval lies between CSGMIN and CSGMAX, with OUTPUT

being several times larger than CSGMIN. The values of CSGMIN and CSGMAX

can be obtained from the output subroutines CSGDMP and RCDUMP. Subroutines

CSGDMP and RCDUMP are designed to aid in the checkout of thermal problem

data decks and should be used before making a transient solution computer

run.

TIMEND (Problem Stop Time)

The use of this control constant is self-explanatory. For the

subroutines as they are presently coded, TIMEND must be specified as larger

than TIMEO, otherwise an error message is printed and the run terminated.

For the explicit routines, if TIMEND is not larger than TIMEO a time-step

of zero will result and the "TIME STEP TOO SMALL" error message will be

printed. The implicit routines will print the message, "TRANSIENT TIME

NOT SPECIFIED." If a user has some criterion for terminating an analysis,

but not the run, he may accomplish this by setting TIMEND=TIMEO when the

criterion is met.

TIMEO ("Old" Time or Problem Start Time)

This control constant represents the "old" time at the beginning

of the current computation interval. It will be updated by the program

after each time step is completed, however, its initial value may be set by

the user and will be interpreted as the problem start time. TIMEO may be

set negative. If not specified by the user, its initial value will be 0.0.

4-39



4.7 LOAD AND GO ROUTINES

Load and go subroutines may be called from the SINDA operations

blocks in the same way as system or SINDA library subroutines. Data may

be communicated to/from load and go routines via arguments or named COMMON

blocks. The follewing list indicates the contents of the various COMMON

blocks which the user may find convenient for inclusion in load and go

routines:

COMMON Block Name Contents

TITLE

TEMP

CAP

SOURCE

COND

KONST

FIXCON

ARRAY

XSPACE

DIMENS

PCl

PC2

20 words of title information (H)

Node Temperature Table (T)

Node Capacitance Table (C)

Node Heat Source Table (Q)

Conductance Table (G)

User Constants Table (K)

Control Constants (50)*

Array Table (A)

Dynamic Storage Locations (X)

Problem Size Parameters (9)**

Pseudo Compute Sequence l

Pseudo Compute Sequence 2

NOTES: (*) The fifty control constants are arranged in the block in

the following order:

1 - TIMEN

2 - DTIMEU

3 - TIMEND

4 - CSGFAC

5 - NLOOP
6 - DTMPCA

7 - OPEITR

8 - DTIMEH

9 - DAMPA

lO - DAMPD

II - ATMPCA

12 - BACKUP

13 - TIMEO

14 - TIMEM

15 - DTMPCC

16 -ATMPCC

17 - CSGMIN

18 - OUTPUT

19 - ARLXCA

2O - LOOPCT

21 - DTIMEL

22 - DTIMEI
23 - CSGMAX

24 - CSGRAL

25 - CSGRCL

26 - DRLXCA

27 - DRLXCC

28 - L!NECT

29 - PAGECT

30 - ARLXCC

31 - LSPCS

32 - ENGBAL

33 - BALENG

34 - NOCOPY

35 - NCSGM

36 - NDTMPC

37 - NARLXC

38 - NATMPC
39 - ITEST

40 - JTEST

41 - KTEST

42 - LTEST

43 - MTEST

44 - RTEST

45 - STEST

46 - TTEST

47 - UTEST

48 - VTEST

49 - LAXFAC

50 - XXX

©

©

©

4-40



(**) The nine problem size parameters are arranged in the block in the

following order:

l - NND 4 - NGT 7 - LSQI

2 - NNA 5 - NCT 8 - LSQ2
3 - NNT 6 - NAT 9 - LENA

4.8 VARIABLE FORMAT CAPABILITY

The variable format capability permits the user to specify that

fixed length fields be used for input data in the five data blocks. This

feature is initiated by including a NEW FORMAT card in a data block. The

new format card contains an 'N_ in column l, followed by slashes (/) in

those columns which will serve to separate the data fields on the data

cards which follow. For example, if slashes appear in columns i, j, k,

and l, then the preprocessor will assume that the first data value on the

following cards will be found in columns l through i-l, the second data

value in columns i+l through j-l, the third data value in columns j+l

through k-l, and the fourth data value in columns k+l through /-l. An

END NEW FORMAT card, which contains an 'E' in column l, is used to termi-

nate the fixed field format and to return to the normal formatting.

data which would have been entered with the standard (3-blanks) option may

be entered under a fixed field format. For any data block, new formats

should be initiated after the block header card and terminated before the

END card. Any type of data value may be entered in a fixed length field.

However, in contrast to the standard option, a blank field on a data card

will be completely ignored. If the user wishes to change directly from

one new format to another, the end new format card need not be used to

terminate the first format. On a new format card, the slash, (/), is the

only character which is recognized in columns 2-80. Hence, comments may

appear between slashes. All of these points are illustrated in the

following example:

4-41
l



11 2 . 3 1+ 5 6

1 80?. 0 0 0 0 0

BCD 3NODE DATA

I0,70.0,0.5

N NUM / TEMP / CAP / NUM / TEMP / CAP
12 80.0 0.3

14 85.0 0.4 16 90.0 0.8

N / /

18 80.0 0.3

20 lO0.O 0.9

22,65.0,0.I ,24,60.0,0.2
END

/ NOTHING

/

4.9 THERMAL NETWORK ERROR CORRECTION PACKAGE

In common practice, data gathered during a physical test of a

system is often used to refine the elements of a thermal math model of the

system. The process used has generally been no more analytical than good

engineering judgment. The subroutines now available in the Thermal Network

Error Correction Package and the Sensitivity Temperature Error Program

provide the engineer with several analytically sound tools which will greatly

facilitate the task of correlating model temperatures to test temperatures.

The former, described in Appendix B, contains routines which use actual test

data to update the parameters of a thermal math model. The latter, described

in Appendix C, provides various quantitative measures of the variance of

temperature values with respect to network parameter values;

4.10 AUXILIARY DATA DECK

The auxiliary data deck consists of all cards which are to be

read in by the user's program. These cards are always placed in the user's

"job control" or "run" deck immediately following the control card which

calls for the execution of "SINDA" ("SINDA" is the name of the "main

program" which calls subroutine EXECTN). On the Univac If08 EXEC II

operating system, this control card would be "VXQT SINDA" (V = 7-8 punch).

Cards in the auxiliary data deck should not be confused with cards in the

SINDA input deck. The latter are read by the SINDA preprocessor, whereas

the former are read by the user's program, either by FORTRAN "READ" state-

ments included in the operations blocks or by "READ" statements imbedded

in subroutines called therefrom.

4-42



©
When subroutines require data to be supplied on cards (as con-

trasted to data communicated through arguments), the description of the

subroutine will always include the details necessary to properly prepare

these cards. It is the user's responsibility, however, to insure that

cards are placed in the auxiliary data deck in the same order in which

the subroutines or "READ" statements, which require them, will be encoun-

tered during the execution of the problem.

\,

4-43



BASIC

5. SUMMARY OF SINDA OPTIONS

INPUT DECK

AND FEATURES

OP[UTiC_S IILOCKS

YARIULES 1
|LOCI(

OATA IILOC[S

TITL(
ILOCI(

OUTPUT CALLS
l.._*r

5-I

\

i



5.l.l INPUT,CONTROL CARP

Basic Format:

I

1 3

+ +

recall £d

where: recall

Cd

P

edit Option

5.1.2 TITLE BLOCK

I 2
9 0

+ ÷

P edit-option

= RECALL if the recall option is specified.

(blank) if not specified.

= AoZlerith name identifying a stored problem

to be recalled. Bl_nk if recall option is
not specified.

--Minus 8_gn (-), if edit'option is l, 2, 3,

or 4, and punching is dssired.

--blankj O, l, 2, 3 or 4. Must be blank or 0

if recall option is specified.

0

Basic Format:

1 2
8 2 1

+ 4. +

BCD 3probiem-t_pe PCS-_ype

title _ds

END

where: problem-type = THERMAL or GENERAL

PCS-Cype = SPCS or LPCS, if problem-type = THERMAL

PCS Speci fi cation:

SPCS: Solution Routines CINDSS, CNFRWD, CNFAST, CNEXPN, CNDUFR, and CNQUIK.

LPCS: Solution Routines CINDSL, CINDSM, CNFRDL, CNBACK, CNFWBK, and CNVARB.

t

5-2

©



TItle Cards:

)

8 2

+ +

BCD NtitZe

where: N = number of 6 character words of title on oared.

Up to 120 characters (20 words) of title information will be retained

for use as an output page heading. All title cards, however, will be printed
with the input deck listing.

5.1.3 DATA BLOCKS

5.1.3.1 BASIC CONVENTIONS

C

Data Types:

INTEGER - up to lO numeric characters.

FLOATING POINT - up to 20 numeric characters.

HOLLERITH - up to 6 characters (first character must be

non-blank and non-numeric, except when data

is entered using the BCD code).

All data types may have, within a field, up to lO leading blanks and
any number of trailing blanks.

Conlnents

1

1 8 2

+ + ÷

_.ode _ta-val_s $ co_ts
REM comments

Ccomments

Restri cti ons:

All data block restrictions given in the following sections are based
on a computer word size of 36 bits.

*When used in the operations blocks, the REM card should not contain comments

which extend past column 72, because they will not be printed out.

5-3



(This page left blank intentionally
to permit related information to

appear on facing pages.)

5-4

0



5.1.3.2 NODE DATA

Block Format:

1

8 2

BCD 3NODE DATA

node-d.at, a- c¢.,,cl,s

END

Node Types :

Diffusion: have a thermal capacitance, can store energy.

Arithmeti c: have zero capaci tance.

Boundary: have a constant temperature.

Restri cti ons:

a. All THERMAL problems must include at least one diffusion node.

b. Node numbers should not exceed 6 digits.

c. Up to 16383 nodes may be defined.

Reference FOrrr_ :

Tn = te_e_tu.re

Cn = capaoitanae

where: n = actual node number

Diffusion nodes have a T, Q and C.

Arithmetic nodes have a T and Q.

Boundary nodes have only a T.

The aotuaZ node number is always positive, even when referencing

boundary nodes.

Unl ts:

Temperatures:

Sources:

Capacitances:

Degrees Farenheit

Energy/Time

Energy/*F

5-5



Node Data Inp.u.tOptions:

l

8 2

N#,Tij C

CAL NH, TijW, X,Y, Z

GEN NN, HN, IN, Ti, C

GEN N_, #Nj IN, Ti, W,X,Y, Z

SIV N#,Ti,AP, F

SPV N#,Ti,AC, F

SIM N#, #N, IN, Ti,AP,F

SPM N#,#N,IN, Ti,AC, F

DIV N#,Ti,AP1,F1,AP2,F2

DIV N#,Ti, SUB, F1,AP2,F2

DIV N#,Ti,AP1,FI,SUB,F2

DPV N#,Ti,AC1,F1,AC2,F2

DPV N#, Ti,SUB, F1, AC2, F2

DPV N#, Ti, AC1, F1, SUB, F2

DIM N#,#N, IN, Ti,APi,FI,AP2,F2

DIM N#, #N, IN, Ti,SUB, F1,AP2,F2

DIM N#,#N,IN, Ti, APt, F1, SUB, F2

DPM N#, #N,IN, Ti, AC1, F1, AC2, F2

DPM N#, #N, IN, Ti, SUB, F2 ,AC2..F2

DPM N#,#N, IN, Ti, ACI, F1, SUB, F2

BIV N#,Ti,AB, E

Single node; (Note 1)

$ C = W*X*Y*Z

Group of nodes; (Note 1)
C = W_X*Y*Z

C vea_ee with T (interpolation)

C varies with f (polynomial)

Combine8 GEN and SIV

8 Combines GEN and SPV

2 materials (interpolation)

2 materials; one has constant C

2 materials; one has constant C

2 materials (polynomial)

2 materials; one has constant C

_ 2 materials; one has constant C

Combines GEN and DIV

Combines GEN and DPV

C varies with time _ temperature

Note l : Node type is specified by the sign on N# and C, as follows:

Diffusion: positive node number, positive capacitance.

Arithmetic: positive node number, negative capacitance.

Boundary: negative node number, non-negative capacitance.

5-6



where:

=

C=

_', X,Y, Z -

IN=

AP.,API.,AP2 =

AC, ACI,AC2 =

FjFIjF2 =

SUB=

Actual node nw_er (non-zero integer).

Initial t¢mp.erature (floating point).

Capacitance (flo_ting point).

Floating point n_r$era. Product is capacitance.

N,_oer of nodes (non-zero integer).

Increment to the node rnzmber (non-zero integer).

References to c_r__ys of temperature vs capacitance

POINTS. (Integer count form).

References to arr.x_s of polynomial COEFFICIENTS

for C = P(T). (Integer count form).

_Itiplying factor8 (floating point dat_ values,

or references to user constants).

Reference to a biv_iatoe array of temperature

and time vs capacitance (integer count form).

Constant value substitute for an array reference

(floating point dat_ value_ or reference to a
user constant).

OPTION

(CODE)

3 b|ank$

CAL

GIN

SlY

9V

- SIl_

DIV

OPV

OIN

BIV

iNOOE TYPE DESCR| PTION

D AIB ,,

X X X TO INPUT A SINGLE NODE WHERE THE CAPACITANCE IS GIVEN AS A SINGLE. CONSTA"FT WLUE

TO INPUT A SINGLE NODE WHERE THE CAPACITANCE WILL fiE CALCULATED BY THE
PREPROCESSOR FROM FOUR FACTORS INPUT BY THE USER.

TO GENERATE ANO INPUT A GROUP OF NODES, EACH HAVING THE SAME INITIAL TEMPERATURE

AND THE S/tHE CAPACITANCE.

TO INPUT A SINGLE NODE WHERE THE CAPACITANCE VARIES WITH TEMPERATURE. FOR SZV,
THE CAPAC|TANCE |S FOUND BY INTERPOLATING ON AN ARRAY OF TEMPERATURE ¥5 CAPACITANCE.
FOR SPY, THE CAPACITANCE IS FOUND BY COMPUTING AN N-TH ORDER POLYNOMIAL FUNCTION
OF TEMPERATURE.

TO GENERATE AND INPUT A r_OUP OF NODES, EACH HAVING THE SAME INIT|AL TEMPERATURE
AND THE SAME TEMPERATURE VARYING CAPACITANCE. FOR SIM, C IS FOUN0 BY INTERP_CATrNG

ON AN ARRAY OF T VS C. FOR SPM, C IS F_JND 8Y CONPUTIP_G A POLYNOHrAL IN T,

TO INPUT A SINGLE NODE CONSISTING OF T_O HATERIAL$ WHICH _AVE DIFFERENT TEMPERATURE

VARYING CAPACITANCES. FOR DIv, C1 AND C2 ARE TAKEN FROM ARRAYS OF T VS C. FOR DPV,
C| AND CZ ARE COMPUTED FROM POLYNOMIALS IN T.

TO GENERATE AND INPUT A GROUP OF NODES, EACH OF WHICH CONSISTS OF THE SAME TWO
MATERIALS HAVING DIFFERENT TEHPERATURE VARYING CAPACITANCES. FOR _IM, C_ AND C2
ARE TALON FROM ARRAYS OF T VS C. FOR OPM, C1 AND C2 ARE COHPUTED FROH POLYNOMIALS
IN T.

TO INPUT A SINGLE NOOE M4ERE THE CAPACITANCE IS A FUNCTION OF TIME AND TEMPERATURE.
THE CAPAC|TANCE [S FOUND 8Y INTERPOLAT|NG ON AN ARRAY OF TIME ANO TEMPERATURE
VS CAPACITANCE.

X X X

O - DIFFUSION A , ARITHMETIC B " BOUNOARY

\

5-7



5.1.3.3 SOURCE DATA

Block Format:

I

B 2

BCD 3SOURCE DATA

source-data- c_rds

END

Restri cti ons :

Entire block is optional.

Reference Forms :

Qn, where n = actual node n_-nber.

Units :

Source Value : Energy/Time

5-8



Source Data Input Options:

OPTION DESCRIPTION
(tAROCO0_)

(3 blanks) TO I._ORESS A CONSTANTHEAT SOURCEON A SINGLE NODE.

r-PN TO IMPRESS THE SAMECONSTANTMEAT SOURC£ON SEVERALNODES.

SlY TO IMPRESS A TEMPERATURE VARYING HEAT SOURCE ON A NODE.

SIT TO IMPRESS A TIME VARYING HEAT SOURCE ON A NODE.

OIT TO IMPRESS THE SUN OF TWO TIME VARYING HEAT SOURCES ON A NODE.

OTV TO IMPRESS THE SUM OF A TIME VARYING SOURCE ANO A TEMPERATURE VARYING SOURCE

ON A NOOE.

'W

8

4,

GEN

SIV

SIT

DIT

DIT

DIT

DTV

DTV

DTV

where:
\

1
2

+

HiI , Q

##, #N,I_, Q

N#,AT, F

N#, At, F

N#,A tl,FI,At2, F2

N# ,SUB, F1,At2,F2

N# ,Atl,F1,SUB ,F2

N#,AtjF1,AT, F2

N# ,SUB, F1, AT, F2

N# ,At, FI ,SUB, E2

NH =

Q=

HN-

IN=

AT =

At,Atl,At2 =

F,FI,F2 =

SUB=

$ Temperature varying source

¢ Time varying source

$ 2wo time v_ding sources

$ Time and temperature varying sources

Actual node number (positive integer).

Value ofsouroe (floating point data
value or reference to a user constant).

Number of nodes (non-zero integer).

Increment to the node number (non-zero integer).

Reference to an array of temperature us

heat ra_e points (integer count form).

References to arrays of meantime vs heat

rate points (integer count form).

Multiplying factors (floating point data
value, or reference to a user constant).

VaZ_e used as a substitute for an array

reference (floating point data value or
reference to a user constant).

5-9



(This page left blank intentionally

to permit related information to

appear on facing pages.)

5-10

-._i"



5.1.3.4 CONOUCTOR DATA

Block For_t:

I

8 2

BCD 3CONDUCTOR

cu_,uoCoP-c_t_-ca.vd8

END

Conductor Types:

LINEAR = heat transfer a function of (Ti-Tj).

RADIATION = heat transfer a function of (Ti4-Tj4).

Restri cti ons:

a. Conductor nu_er may be as large as 6 digits.

b. Up to 65535 conductors may be defined.

References:

Gn, where: n = ao_al oondu_cor number

When used in this reference form, conductor numbers are always
positive.

Units:

LINEAR = Energy/Time-*F

RADIATION = Energy/Time-°R 4

Conductance Calculations:

For heat transfer by- Conduction:

Convection:

Radiation:

Mass Flow:

kA/L

hA

ocFA

mCp

Where: k = conductivity (energy/(time-length-°F))

A = area (length2); L = length; F - form factor

h = film coefficient (energy/(time-length2-OF))

= flow rate (mass/time); ¢ = emissivity

Cp= specific heat (energy/(mass-°F))

o = Stephan-Bol tzman constant (energy/(time-length2-OR _))

5-11



Conductor Data input Options:

!

8 2

G#,NA, NB, G

G#,NA1, NBI, NA2, NB2,. ..NAn, NBn, G

One conductor

Multiply-connected canductor

CAL G#,NA •NB, W,X,Y, Z,

GEN G#, #G,IG, NA,INA,NB, INB, G

GE N G#, #G,IG, NA, INA, NB, INB, W,X, Y,Z

G = W*X*Y/Z

Group of conductors

_ G = W_X*Y/Z

SIV G#,NA,NB,AP, F G vs T by interpolation (Note i)

SPV G#,NA,NB,AC, F G vs T from polynomial (Note I}

SIM G#,#G, IG, NA, INA, NB, INB,AP, F Combines GEt]are SIV (Note I)

SPM G#, #G,IG, NA, INA, NB, INB, AC, F Combines GEN and SPV (Note 1)

DIV G#,NA,NB,APA,FA,APB, FB

DIV G#,NA, NB, S/r_.b,FA,APB,FB

DIV G#,NA,NB,APA,FA,SUB,FB

2 materials; G vs T by interp.

2 materials; one has constant G

2 materials; one has constant _

DPV G#,NA,NB,ACA,FA,ACB,FB

DPV G#,NA,NB, S_B, FA,ACB, FB

DPV G#,NA,NB,ACA,FA,SUB, FB

2 materials; G vs T from poly.

2 materials; one has co>_tant G

2 materials; one has constan_ "

DIM c,,_,_'-'#G,IG, NA,INA,NB,INB,APA, FA,APB, FB

DIM G#, #G,IG, NA,INA,NB,INB, SUB, FA,APB, FB

DIM G#, #G,IG,NA,IN.4,NB, IiVB,APA,FA,SUB,FB

Combines GEN and DTV

DPM G#, #G, IG, NA,INA, NB, INB,ACA, FA, ACB, FB

DPM G#,#G, IG, NA,INA,NB, INB,SUB, FA,ACB, FB

DPM G#, #G,IG, NA,INA,NB,INB,ACA, FA,SUB, FB

Combines GEN and DPV

BIV G#,NA,NB,AB,F G varies with time and temperavure

C�

Notes: l . Normally, the average temperature of nodes NA and NB
is used to evaluate the conductance. To indicate that

only the temperature of node NA is to be used, F must

be entered as a floating point data value preceeded by

a minus sign. The minus sign is considered only as a

flag and is ignored in the arithmetic sense. This

feature applies only to the options noted.

, The negative signs on node numbers which define boundary

nodes are considered flags and are ignored in the arith-

metic sense. Preceeding NA or NB with a minus sign

will cause the conductor to be treated as a one-way

conductor for fluid flow modelling. The upstream node

should be identified with the minus sign.

5-12

_...Ij

)



'%,.

where:

Note 3:

NA,NB =

#G =

IG =

_NAjINB =

AP, A.PA_APB =

SUB =

Actz,_'/, aon_ctor n_mbe_ (non-zero integer).

[No,:,e3].

Actual node nu_ers of the nodes to which the

oonductor is connected (poaitive integer - see

Note 2).

Conductor value (flouting point data value).

Values used to co_pute conductance:

G - W_X*Y/Z (floating point).

Total number of oonc_ctore to be generated

(non-zero integer).

In_rement to the con_ctor number (integer).

Increments to the _de numbersj NA and NBj

respectively (integer).

References to arrays of temperature us con-

duotanoe POINTS (integer count form).

References to arrays of polynomial COEFFICIENTS

for G = P(T).

M_Itipl_'ing factors (floating point c_t_ values -

see Note I, or references to user constants).

Value used as a substitute for an array reference

(floating point data v-_lue, or reference to a
u_er constant).

Conductor type is specified by the sign of the G# as

LINEAR = positive conductor number.

RADIATION = negative conductor number.

follows:

OPTION

(coo_)
3 b14nks

CAL

GEN

$1V

SPY

$!m

SRN

OIV

OPV

OIM

81V

I_SCRIPTION

TO INPUT A SINGLE COMOUCTOR WHERE THE CONOUCTANCE IS GIVEN AS A SINGLE, CONSTANT VALUE.

TO INPUT A SINGLE CONDUCTORWHERETHE CO_OUCTANCEWILL BE CALCULATEDBY 1"PIEPREPROCESSOR
FROMFOUR FACTORSINPUT BY THE USER.

TO GENERATEAND INPUT A _UP OF CONDUCTORS,EACH HAVING THE SNq[ CONOUCTANCE.
i,

TO INPUT A SINGLE CONOUCTORWHERETHE CONDUCTANCEVARIES WITH TE.HPERATURE. FOR SIV, THE
CONSTANCE I$ FOUNO BY INTERPOLATING ON AN ARRAY OF TEHPEEATURE VS CONDUCTANCE. FOR

SPV, THE CONDUCTANCE IS FOUND BY COMPUTING AN N-TH ORD.rRPOLYNOMIAL FUNCTION OF TEMPERATURE.

TO GENERATEANO INPUT A GROUPOF CONOUCTORS,EACH HAVING THE SAMETEMPERATUREVARYING

CONOG'CTANCE.FOR SIN, G IS FOLRDBY INTERPOLATING ON AN ARRAY OF T VS G. FOR SPM, G IS
FOUNOBY C&_MPUTINGA POLYNOMIAL IN T.

TO INPUT A SINGL[ CONDUCTOR REPRESENTING A PATH THROLIG_ TWO MATERIALS WHICH HAvE DIFFERENT
TEMPERATUREVARYING CONDUCTANCES. FOR OIV, G1 AND G2 ARE TAKEN FROMARRAYS OF T VS G.
FOR OPV, GI AND G2 ARE COMPUTEOFROMPOLYNOMIALSIN T.

TO GENERATEAND INPUT A GROUP OF CONDUCTORS,EACH REPRES[NTING THE SAME PATH THROUGHTWO
MATERIALS gHICH HAVE DIFFERENT TEMPERATUREVARYING CONOuCTANCES. FOR DIM, GI, AND G;_
ARE TAKEN FROM_RRAYS OF T V$ G. FOR OPM, GI ANOGT. ARE COMPUTEOFROM_Y.NOMIALS I:i T.

TO INPUT A SINGLE CONDUCTOR WHERE THE COelOUCTANCE IS A FUNCTION OF TIME AND TEMPERATURE.

THE CONDUCTANCEIS FOUNDBY INTERPOLATING ON AN ARRAYOF TIME AND TEMPERATUREVS
CONOUCTANCE.

5-13



5.3.3 PARAM_ER RU,_IS

Problem Specification Card Formats:

1

8 2

BCD 3INITIALPARAMETERS
BCD 3FINAL PARAMETERS

Block Requirements:

I. TITLE block must be present.

2. NODE, CONDUCTOR, CONSTANTS and ARRAY DATA blocks

may be present if they contain data changes.

3. If the ARRAY DATA block is absent, the following

card must be inserted in its place:

I

8 2

BCD 3END PARAMETER RUN

Restri cti ons :

a. Only the standard (3-blanks) and BCD options may
be used to specify data changes.

b. Conductor data changes require only the conductor

number and conductance value; the node information

is not specified.

c. Changes to an array should specify no more values

than were originally entered in the array. Fewer
values may be specified._

©

• 5-24



5.4 VARIABLE FORMAT CAPABILITY

Card Fo_,_ts:

To specify a new format:

I

¢

N 8lashes (/) in aFpropriate coZurm_

To terminate a new format:

1

¢

E

Slash Interpretation :

Slashes in columns i, j, and k specify fields from:

column l to i-l

column i+l to j-l

and column j+l to k-l

Res tri cti ons :

a. Blank fields are igno_d.

b. May be used only to enter data which would have been
entered with the standard option (3-blanks).

c. May be used with any data block.

d. Comments may appear between slashes on the 'N' card.

5-25



6. SINDA SUBROUTINE LIBRARY

6.1 REFERENCE INFORMATION

6.1.1 CONVENTIONS

6.1.1.l DATA TYPES

Unless otherwisespecified, formal arguments whose first letter is

I,J,K,L,M, or N represent actual arguments which must be INTEGERS. Formal

arguments beginning with any other letter represent actualarguments which

must, unless otherwise specified, be FLOATING POINT values. When an actual

argument must be a HOLLERITH value, this fact will be stated explicitly.

6.1.I.2 REFERENCE FORMS

Arguments which serve as input data to a subroutine may be supplied

as literal data values or as identifiers. In the former case, the value

must be of the type (i.e., integer, floating point, etc.) shown in the

calling sequence. In the latter case, the identifiermust refer to a

memory location which contains a value of the proper type.

Arguments which will receive the results (i.e., output) of a sub-

routine must be supplied as identifiers. Overlooking this restriction will

lead to havoc, as described in Section 3.4.4.2.

Formal arguments that are suffixed with (IC) (e.g., AX(IC),A(IC),

Y(IC), etc.) indicate that the actual argument supplied by the user MUST

be an array reference of the INTEGER COUNT form. Formal arguments that

are suffixed with (DV) (e.g. A(DV), X(DV), Y(DV), AZ(DV), etc.) indicate

that the actual argument supplied by the user must refer to the location of

the first data value (i.e., the starting location) in a sequence of data

values (i.e., an array). Hence, the user may supply an array reference of

the DATA VALUE form, or in general, any reference which refers to the

starting location of the desired sequence of data values.

6.1-1



/

6.].2 ALPHABETICAL

Name Page

AABB 6.6-12

ABLATS 6.8-5

ACSARY 6.5-6

ADARIN 6.3-8

ADD 6.3-3

ADDALP 6.6-I0

ADDARY 6.3-3

ADDFIX 6.3-3

ADDINV 6.3-8
ALPHAA 6.6-I0

ARCCBS 6.5-6

ARCSIN 6.5-5

ARCTAN 6.5-6

ARINDV 6.3-8

ARYADD 6.3-3

ARYDIV 6.3-7

ARYEXP 6.5-7

ARYINV 6.3-8

ARYMNS 6.3-I0

ARYMPY 6.3-5

ARYPLS 6.3-I0

ARYST_ 6.3-]2

ARYSUB 6.3-4

ASNARY 6.5-5

ASSMBL 6.6-i3

ATNARY 6.5-6

BABT 6.6-13

BIVLV 6..8-4

BKARAD 6.3-12

BLDARY 6.3-12

BRKARY 6.3-12

BTAB 6.6-13
BVSPDA 6.4-14

BVSPSA 6.4-14

BVTRNI 6.4-14

BVTRN2 6.4-14

CALL 6.6-]9

CDIVI 6.3-9

CINC_S 6.5-4

CINDSL 6.2-3

CINDSM 6.2-4

CINDSS 6.2-2

CINSIN 6.5-4

CINTAN 6.5-5

CMPXDV 6.3-9

CMPXMP 6.3-6

CMPXSR 6.5-9

C_YI 6.3-6

CNBACK 6.2-I0

CNDUFR 6.2-8

LISTING

Name

CNEXPN

CNFAST

CNFRDL

CNFRWD

CNFWBK

CNQUIK
CNVARB

COLMAX

COLMIN

CBLMLT

COSARY
CPRINT

CSGDMP

CSQRI

CVQIHT

CVQIWM

DAIICY

DAIIMC
DAI2CY

DAI2MC

DIAG

DIAGAD

DISAS

DIVARY

D!VFIX

DIVIDE

DIDEGI

DIDEG2

DIDGII

DIDIDA

DIDIIM

DIDIMI
DIDIWM

DID2DA

DID2WM

Dl IMDI

Dl IMIM

Dl IMWM

DIMDG]

DlMDG2

DlMl DA

DIMIMD

DIMIWM

DIM2DA

DIM2MD

DIM2WM

DIICYL

DIIDAI

DIIDIM

DIIMCY

Page

6.2-7

6.2-6

6.2-5

6.2-5

6.2-9

6.2-12

6.2-II

6.6-15

6.6-15

6.6-14

6.5-4

6.7-3

6.2-13

6.5-9

6.4-7

6.4-7

6.4-II

6.4-12

6.4-II

6.4-12

6.6-6

6.6-6

6.6-13

6.3-7

6.3-7

6.3-7

6.4-4

6.4-9

6.4-6

6.4-4

6.4-6

6.4-6
6.4-5

6.4-9

6..4-9
6.4-7

6.4-7

6.4-7

6.4-5

6.4-I0

6.4-5

6.4-6

6.4-6

6.4-I0

6.4-I0

6.4-I0

6.4-II

6.4-6

6.4-6

6.4-12

Name

DIIMDA

DIIMDI

DI2CYL

DI2MCY

DI2MDA

D2DEGI

D2DEG2

D2DIWM

D2D2WM

D2MXDI

D2MXD2

D2MXIM

D2MX2M

D3DEG]

D3DIWM

EFABS

EFACS

EFASN

EFATN

EFC_S

EFEXP
EFFEMS

EFFG

EFL_G

EFP_W
EFSIN

EFSQR

EFTAN

ELEADD

ELEDIV

ELEINV

ELEMUL
ELESUB

ENDMBP
E_F

EXPARY

EXPNTL

FILE

FIX

FLIP

FLBAT

FULSYM

GENALP

GENARY

GENC_L
GPRINT

GSLBPE

INTRFC

INVRSE

IRRADE

Page

6.4-5

6.4-6

6.4-II

6.4-12

6.4-9

6.4-15

6.4-15

6.4-15

6.4-15

6.4-16

6.4-16

6.4-i6
6.4-16

6.4-17

6.4-17

6..6-9

6.6-8

6.6-8

6.6-8

6.6-8

6.6-9

6.8-I0

6.8-2

6.6-9

6.6-9
6.6-8

6.6-9

6.6-8

6.6-7

6.6-7

6.6-7

6.6-7
6.6-7

6.6-20

6.7-12

6.5-7

6.5-7

6.6-19

6.3-9

6.3-II

6.3-9

6.6-6

6.6-5

6.3-II

6.6-5

6.7-3

6.4-13

6.3-9

6.6-II

6.8-9

Name

IRRADI

ITRATE

JACBBI

JQIN

LAGRAN

LGRNDA

LIST

LQGE

LQGEAR

LQGT

LQGTAR

LQDVAP

LQSLTR
LSTAPE

LSTSQU
MASS

MATADD

MATRIX

MAXDAR

MLTPLY

MQDES

MPYARY

MPYFIX

MULT

MXDRAL

NEWRT4

NEWTRT

ONES

PL_TLI

PLQTL2

PLQTXI

PLBTX2
PL_TX3

PLBTX4

PLYARY

PLYAWM

PLYEVL

PLYNML

PNTABL

PQLMLT

P_LSOV

PBLVAL

PRESS

PRINT

PRINTA

PRINTL

PRNPLT

PRNTMA

PRNTMI

PRNTMP

Page

6.8-9

6.4-18

6.6-18

6.3-15

6.4-3

6.4-3

6.7-i3

6.5-8

6.5-8

6.5-7

6.5-7

6.8-8

6.8-7

6.6-20

6.5-12

6.6-22

6.6-I0

6.6-10

6.3-16

6.3-5

6.6-21

6.3-5

6.3-5

6.6-II

6.3-16

6.5-I0

6.5-I0

6.6-5

6.7-8

6.7-8

6.7-8

6.7-8
6.7-9

6.7-9

6.5-II

6.5-II

6.6-17

6.5-II

6.7-]4

6.6-17

6.6-18

6.6-17

6.8-2

6.7-4

6.7-5

6.7-4

6.7-7

6.7-5

6.7-5

6.7-4

©

6.1-2



©

( )

Name Page

PSINTR 6.4-13

PSNTWM 6.4-13

PUNCH 6.7-13

PUNCHA 6.7-5

QFgRCE 6.8-3

QFPRNT 6.7-3

QINTEG 6.8-3

QINTGI 6.8-3

QIPRNT 6.7-3

QMETER 6.8-3

•QMTRI 6.8-3

QNPRNT 6.7-3

RCDUMP 6.2-13

RDTNQS 6.8-3

READ 6.7-12

REFLCT 6.6-14

REWIND 6.7-12

RgWMLT 6.6-14
SCALAR 6.6-I0

SCALE 6.3-13

SCLDEP 6.3-6

SCLIND 6.3-6

SCRPFA 6.8-I0

SETMNS 6.3-I0

SETPLS 6.3-I0

SHFTV 6.3-II

SHFTVR 6.3-II

SHIFT 6.6-14

SHUFL 6.6-15

SIGMA 6.6-5

SIMEQN 6.5-II
SINARY 6.5-4

SLDARD 6.3-14

SLDARY 6.3-14

SLRADE 6.8-10
SLRADI 6.8-I0

SMPINT 6.5-3

SPLIT 6.3-15

SPREAD 6.3-15

SPRESS 6.8-2

SQR_T 6.5-9

SQRCTI 6.5-9
STFSEP 6.3-13

STFSEQ 6.3-13

STFSQS 6.3-13
STIFF 6.6-23

STNDRD 6.7-4

STgARY 6.3-12

ST_REP 4-14

ST_RMA 6.3-14

SUB 6.3-4

Name

SUBARY

SUBFIX

SUMARY

SYMDAD

SYMFRC

SYMFUL

SYMINV

SYMLST

SYMREM

SYMREP

TANARY

TD_T

TPRINT

TRANS

TRPZD

TRPZDA

UNDIAG

UNITY

VARCCM

VARCSM

VARCl

VARC2

VARGCM

VARGSM

VARGI

VARG2

WRITE

ZERB

Page

6.3-4

6.3-4

6.3-3

6.6-16

6.6-6

6.6-6

6.6-16

6.7-13

6.6-16

6.6-16

6.5-5

6.5-12
6.7-3

6.6-12

6.5-3

6.5-3

6.6-6

6.6-5

6.4-8

6.4-8

6.4-8

6.4-8

6.4-8

6.4-8

6.4-8

6.4-8

6.7-12

6.6-5

6.1-3



6.2 EXECUTION SUBROUTINES (NETWORK SOLUTION & OUTPUT)

Network Solution

Steady State

CINDSS

CINDSL

CINDSM

Transient

ONFRWD

ON FRDL

CNFAST

CNEXPN

CNDUFR

ONFWBK

CNBACK

CNVARB

CNQUIK

Output

CSGDMP

RCDUMP

Block iteration

Successive point iteration

Modified CINDSL, radiation dominated problem

Explicit forward differencing

Explicit forward differencing

Accelerated forward differencing

Exp]icit exponential prediction

Stable explicit finite differencing

Impl icit forward-backward differen cing

Implicit backward differencing

Combination of backward and forward-backward

di fferen cing

Unconditionally stable explicit method

Network criteria and linkages •

Network criteria and linkages

Page

6.2-2

6.2-3

6.2-4

6.2-5

6.2-5

6.2-6

6.2-7

6.2-8

6.2-9

6.2-I0

6.2-II

6.2-12

6.2-13

6.2-13

6.2-I



NETWORK SOLUTION -- STEADY STATE

EXECUTI_ SUBROUTINE NAME: ClNDSS

PURPOSE:

This" subroutine ignores the capacitance values of diffusion nodes to cal-

culate the network steady state solution. Due to the SPCS requirement,
diffusion nodes are solved by a "block" iterative method. The user is re-

quired to specify the maximum number of iterations to be performed in

attempting to reach the steady •state solution (control constant NL_OP) and

the relaxation criteria which determines when it has been reached (DRLXCA

for diffusion nodes and ARLXCA for arithmetic nodes). The subroutine will
continue to iterate until both of these criteria are met. If the iteration

count exceeds NL_}_P an appropriate message is printed. VARIABLES l and
OUTPUT CALLS are performed at the start and VARIABLES 2 and OUTPUT CALLS

are performed upon completion. VARIABLES l is also called at the start of

each iteration. If not specified, control constants DA_PD and DAMPA are

are set at l.O. They are used as multipliers times the new temperatures,
while 1.0 minus their values are used as multipliers times the old tem-

peratures, in order to "weight" the returned answer. This weighting of

so-much-new and so-much-old is useful for damping oscillations due to non-
linearities. • They may also be used to achieve over relaxation.

If a series of steady state solutions at various times are desired, this

can be accomplished by specifying control constants T!MEND and BUTPUT.

_UTPUT will be used both as the output interval and the computational in-
terval. In this case appropriate •calls would have to be made in VARIABLES l

to modify the boundary conditions with time.

RESTRI CTI ONS:

The SPCS option is required. Diffusion nodes receive a "block" iteration

while arithmetic nodes receive a "successive point" iteration; no accelera-

tion features are utilized. Control constants NL_)_)P,DRLXCA, and ARLXCA

must be specified. Successive steady state solutions can be obtained by
specifying control constants TIMEND and _UTPUT. Other control constants

which are activated or used are: LI_)PCT, DRLXCC, ARLXCC, TIMEN, TIMEM,

TIME_), DAMPD, DAMPA, DTIMEU, LINECT and PAGECT. Control constant _}PEITR is
checked for output each iteration.

CALLING SEQUENCE: CINDSS

DYNAMIC STORAGE REQUIREMENTS:

This subroutine utilizes one dynamic storage core location for each
diffusion node

/

6.2-2



NETWORK SOLUTION -- STEADY STATE

_XECUTION SUBROUTINE NAME: CINDSL

PURPOSE:

This" subroutine ignores the capacitance values of diffusion nodes to cal-

culate the network steady state solution. Since this subroutine has the

LPCS requirement, both diffusion and arithmetic nodes receive a "succes.sive

point" iteration. In addition, on every third iteration, a linear extrap-

olation is performed on the error function plot of each node in an attempt

to accelerate convergence. The user is required to specify the maximum

number of iterations to be performed in •attempting to reach the steady

state solution (control constant NI.B_P) and the relaxation criteria which

determine when it has been reached (DRLXCA for diffusion nodes and ARLXCA

for arithmetic nodes). The subroutine will continue to iterate until both

of the above criteria are met. If the iteration count exceeds NL_)_P an

appropriate message is printed. VARIABLES l and OUTPUT CALLS are per-

formed at the start and VARIABLES 2 and OUTPUT CALLS are performed upon

completion. VARIABLES l _s also called at the start of each iteration.

if not specified, control constants DAMPD and DAMPA are set at l.O. They

are used as multipliers times the new temperatures while l.O minus their'

values are used as multipliers times the old temperatures in order to

"weight" the returned answer. This weighting of so-much-new and so-much-

old is useful for damping oscillations due to nonlinearities. They may
also be used to achieve over relaxation.

If a series of steady state solutions at various times are desired, this

can be accomplished by specifying control constants TIMEND and _UTPUT.

_UTPUT will be used as the output interval and the computation interval. In

this case appropriate calls would have to be made in VARIABLES l to modify

boundary conditions with time.

RESTRICTIONS:

The LPCS option is required. Diffusion and arithmetic nodes receive a

"successive point" iteration and an extrapolation method of acceleration.

Control constants NL_)BP, DRLXCA, and ARLXCA must be specified. Successive

steady state solutions can be obtained by specifying control constants

TIMEND and OUTPUT. Other control constants which are activated or used are:

LO_)PCT, DRLXCC, ARLXCC, TIMEN, TiMEM, TIMEO, DAMPD, DAMPA, DTIMEU, LINECT,

and PAGECT. Control constant OPEITR is checked for output each iteration.

CALLING SEQUENCE: ClNDSL

DYNAMIC STORAGE REQUIREMENTS:

This subroutine utilizes two dynamic storage core locations for each
diffusion and arithmetic node.

6.2-3



NETWORK SOLUTION -- STEADY STATE

EXECUTION SUBROUTINE NIkME_ CINDSM

PURPOSE:

This'is a steady state execution subroutine specifically designed for radi-

ation dominated problems. The CINDSL subroutine is the base and was

modified to operate in a quasi-linear manner. The problem is linearized

(i.e., effective radiation evaluated and held constant) and then the

linearized problem is solved. The nonlinearities are then reevaluated and

and fixed (linearized) and the problem is again solved. This linearization

frequency is based on control constant LAXFAC (an integer). The user must

satisfy the control constant requirements for CINDSL.

RESTRICTIONS:

The long psuedo-compute sequence is required, and control constant LAXFAC

must be specified. See subroutine CINDSL.

CALLING SEQUENCE : CINDSM

DYNAMIC STORAGE REQUIREMENTS

This subroutine requires three dynamic storage locations for each diffusion
and arithmetic node, plus one location for each conductor.

_J
l

L

6.2-4



k

NETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAMES: CNFRWD or CNFRDL

PURPOSE:

These routines perform transient thermal analysis by the explicit forward

differencing method:

Ci * [Ti(new)'Ti(°Id)] = I !0 Gj* [Tj(old) " Ti(old)] + Qi / t_t
i-
j/i

Gj represents the conductors into node i, Qi the source location, and

Ci the nodal capacity

The stability criteria of each diffusion node is calculated asthe capacitance

divided by the sum of the conductors (Ci/zGij), and the minimum value is placed
in control constant CSGMIN. The time step used (control constant DTIMEU) is

calculated as 95% of CSGMIN divided by CSGFAC. Control constant CSGFAC is set

at l.O unless specified larger by the user. A "look ahead" feature is used

when calculating DTIMEU. If one time step will pass the output time point the

time step is set to come out exactly on the output time point; if two time

steps will pass the output time point the time step is set so that two time
steps will come out exactly on the output time point. DTIMEU is also compared
to DTIMEH and DTIMEL. If DTIMEU exceeds DTIMEH it is set equal to it; if

DTIMEU is less than DTIMEL the problem is terminated. If no input values are

specified, DTIMEL is set at zero and DTIMEH it is set at infinity. The maxi-

mum temperature changes calculated over an iteration are placed in control

constants DTMPCC and ATMPCC. They are compared to DTMPCA and ATMPCA, respec-

tively, and, if larger, cause DTIMEU to be reduced by the ratio of DTMPCA/
DTMPCC or ATMPCA/ATMPCC. If DTMPCA and/or ATMPCA arenot specified they are

set at infinity.

All diffusion nodes are calculated prior to solving the arithmetic nodes.

The user may iterate the arithmetic node solution by specifying control
constants NL_P and ARLXCA. If the arithmetic node iteration count exceeds

NL_P, the_answers are accepted as is, and the subroutine continues without

any user notification. In addition, the user may specify control constant

DAMPA in order to dampen possible oscillations due to nonlinearities.

RESTRICTIONS:

The SPCS option is required for CNFRWD, the LPCS option is required for

CNFRDL, and control constants TIMEND and IBUTPUT must be specified. Problem

start time, if other than zero, may be specified as TIME_).. Other control
constants used or activated are: TIMEN, TIMEM, CSGMIN, CSGFAC, DTIMEU,

DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, NLI_BP, LI_PCT, DAMPA, ARLXCA, ARLXCC,

_)PEITR, BACKUP, LINECT, and PAGECT.

CALLING SEQUENCE: CNFRWD or CNFRDL

DYNAMIC STORAGE REQUIREMENTS:

These subroutines utilize one dynamic storage core location for each

diffusion and arithmetic node.
6.2-5



NETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAJME: CNFAST

PURPOSE:

This-subroutine is a modified version of CNFRWD which allows the user to

specify the minimum time step to be taken. The time step calculations

proceed exactly as in _FRWD until the check with DTIMEL is made. If

DTIMEU is less than DTIMEL, it is set equal to it. As each node is cal-

culated itsCSGMIN is obtained and compared to DTIMEU. If equal to or

greater, the nodal calculation is identical to CNFRWD. If the CSGMIN For

a node is less than DTIMEU, the node receives a steady state calculation.

if only a small portion of the nodes in a system receive the steady state

calculation, the answers are generally reasonable. However, as the number

of nodes receiving steady state calculations increases, so do the solution
inaccuracies.

RESTRICTIONS:

The SPCS option is required and control constants TIMEND and _)UTPUT must

be specified. The checks on control constants DTMPCA, ATMPCA and BACKUP

are not performed. Other control constants which are used or activated

are: TIMEN, TIMEM, TIMEg, CSGMIN, CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCC,

ATMPCC, DAMPA, ARLXCA, ARLXCC, NL_)_P, L_OPCT, LINECT, and PAGECT.

CALLING SEQUENCE: CNFAST •

DYNAMIC STORAGE REOUIPJZMENTS:

This subroutine utilizes one dynamic storage core location for each
diffusi on node.

6.2-6



_

NETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAME: CNEXPN

PURPOSE:

This subroutine performs transient thermal analysis by the exponential

prediction method, and the solution equation is of the following form:

Ti \ sGj Ci Ci
= - e + Tie

For the derivation, the reader should see Reference 9. The above equation

is unconditionally stable no matter what size time step is taken and re-

duces to the steady state equation for an infinite time step. However,

stability isnot to be confused with accuracy. Time steps larger than

those taken with C/_FRWD remain stable but tend to lose or gain energy in

the system. For this reason, this subroutine is not recommended where

accuracy is sought. However, it is suitable for parametric analysis where

trends are sought and a more accurate method will be utilized for a final

analysis.

The inner workings cf the subroutine are virtually identical to CNFRWD with

the exception of the solution equation and the use of CSGFAC. The time

step used (DTIMEU) is calculated as CSGMIN times CSGFAC. The look ahead

feature for calculating the time step is identical as are the checks with

DTIMEH, DTIMEL, and _)TMPCA. The diffusion nodes are calculated prior to

the arithmetic nodes and the arithmetic nodes utilize NL_@P, ARLXCA, and

DAMPA exactly the same as CNFRWD.

RESTRICTIONS:

The SPCS option is required and control constants TIMEND and _UTPUT must be
specified. Problem start time if other than zero may be specified as TIME_).
Other control constants used or activated are: TIMEN, TIMEM, CGSMIN,

CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, ARLXCA,

ARLXCC, DAMPA, _}PEITR, BACKUP, LINECT, and PAGECT.

CALLING SEQUENCE: CNEXPN

DYNAMIC STORAGE REQUIREMENTS:

This subroutine utilizes one dynamic storage core location for each
diffusion and arithmetic node.

e

6.2-7



NETWORK SOLUTICk_(°- TRANSIENT

EXECUTION SUBROUTINE NAME: CNDUFR

This subroutine performs an unconditionally stable explicit finite dif-

ferencing solution often called the Du Fort-Frankel method. This is

basically the forward differencing equation but the present temperature

of the node being operated on is replaced by a time weighted average of

future and past temperatures. This substitution is performed on the space

derivative temperatures only. The user may specify time steps larger than

the stability criteria (CSGMIN), but within reason.

RESTRICTIONS:

The same as CNEXPN, CSGFAC is used as a factor (>l.O) to increase the

time step used above the stability limit.

CALLING SEQUENCE: CNDUFR

DYNAMIC STORAGE REQUIREMENTS:

lhis subroutine requires two dynamic storage locations for each diffusion

node, and one location for each arithmetic node.

.i_,-_- .

©

\....i

6.2-8



NETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAME: CNFWBK

PURPOSE:

This execution subroutine perfo_s transient thermal analysis by implicit

"forward-backward" fini te diffe renci ng (Cran k-N ichol son •Method) :

2Ci* [Ti(new)-Ti (old)] = Ij!oGj* [Tj(new)+Tj (old)-Ti (new)-Ti (old)] +2Qi 1*At

j_l

The LPCS option is required and allows the simultaneous set of equations to

be solved by "successive point" iterations. During the first iteration for

a time step, the capacitance values are doubled and divided by the time

step and the energy transfer rates based on old temperatures are added to

the source locations. Upon completing the time step the capacitance values

are returned to their original state. The iteration looping, covergence

criteria, and other control constant checks are identical to CNBACK. The

time step checks and calculations and look-ahead feature are identical to
that used for _BACK.

The automatic radiation transfer damping and the extrapolation method of

acceleration mentioned under the CNBACK subroutine writeup are also employed

in this subroutine. Diffusion and/or arithmetic temperature calculations

may be damped through the use of DAMPD and/or DAMPA respectively. Control
constants BACKUP and _)PE!TR are continuously checked. CNFWBK internally

performs forward-backward differencing of boundary conditions. For this

reason, the user should utilize TIMEN as the appropriate independent

variable in VARIABLES I operations.

It is interesting to note the CNFWBK generally converges in 25% fewer

iterations than CNBACK. The probable reason for this is that the boundary
of the mathematical system is better defined. While every future tempera-

ture node under CNBACK is connected to its present temperature, under

CNFWBK every future temperature node is also receiving an impressed source

based on the present temperature.

RESTRICTIONS:

The LPCS option is required. Control constants TIMEND, _UTPU_ DTIMEi

NLOOP, and DRLXCA and/or ARLXCA must be specified. Other control constants
which are used or activated are: TIMEN, TIMEO, TIMEM, CSGMIN, DTIMEU,

DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC and/or

ARLXCC, L_BPCT, BACKUP, OPEITR, LINECT, and PAGECT,

CALLING SEQUENCE: CNFWBK

DYNAMIC STORAGE REQUIREMENTS:

This subroutine utilizes three dynamic storage core locations for each

diffusion node and one for each arithmetic and boundary node.

6.2-9



NETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAME: a_BACK

PURPOSE :

Thi_ subroutine performs transient thermal analysis by implicit backward

differencing:

n

j#i

* [Tj(new)- Ti(new)] +Qi.l*At

The LPCS option is re.quired and allows the simultaneous set of equations to

be solved by "successive point" iteration. Each third iteration, diffusion

node temperatures which trace a continuous decreasing slope receive an

extrapolation on their error function Curve in an attempt to accelerate

convergence. For convergence criteria, the user is required to specify

NLI_}P and DRLXCA and/or ARLXCA. If the number of iterations during a time

step exceeds NL_}P a message is printed but the problem proceeds.

VARIABLES l is performed only once for each time step. Since this sub-

routine is implicit the user must specify the time step to be used as
DTIMEI in addition to TiMEND and _UTPUT. The look-ahead feature for the

time step calculation in CNFRWD is used as are the checks for DTIMEH,

DTMPCA and ATMPCA, but not for DTIMEL. Damping of the solutions can be

a_hieved through use of control constants DAMPD and/or DAMPA. Control con-

stants BACKUP and _PEITR are continuously checked.

Implicit methods of solution often oscillate at start up or for boundary
step changes when radiation conductors are present. CNBACK contains an

automatic damping feature which is applied to radiation conductors. The

radiation transfer to a node is calculated for its present temperature and
a temporary new temperature is calculated. Then the radiation transfer is
recalculated and the final node temperature is calculated based on the

arithmetic mean of the two radiation transfer calculations. This automatic

radiation damping has proven to be quite successful and lessens the need
for using DAMPD and DAMPA.

RESTRICTIONS:

The LPCS option is required. Control constants TIMEND, OUTPUT, DTIMEI,

NLOOP and DRLXCA and/or ARLXCA must be specified. Other control constants

which are used or activated are: TIMEN, TIMEO, TIMEM, CSGMIN, DTIMEU,

DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC, ARLXCC,
LOOPCT, BACUP, _)PEITR, LINECT and PAGECT.

CALLING SEQUENCE: I}IBACK

DYNAMIC STORAGE REQUIREMENTS:

This subroutine utilizes three dynamic storage core locations for each

diffusion node and one for each arithmetic and boundary node.

6.2-I0

t

.....i"--.--T---___ -- -__ -T'_-",-,".......---'_.-A-------:'-.---_-.---,_-.....



. o .......

©
NETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTI.NE NAME: CNVARB

PURPOSE:

This subroutine applies an implicit finite differencing solution to the

diffusion equation. It internally calculates a variable beta weighting

factor* as the ratio of the explicit stability criteria, CSGMIN, divided

by the computation time step used, DTIMEU. A constraint that beta must

be equal to or larger than one half is imposed. Hence, the method of

solution lies somewhere between backward and forward-backward differencing.

RESTRICTIONS:

The restrictions listed for CNFWBK and/or CNBACK apply.

CALLING SEQUENCE: CNVARB

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires three dynamic storage locations for each dif-

fusion node, plus one location for each arithmetic and boundary node. •

C ,__

*This beta factor is the same as the lambda, _, shown in Section 4.5.2.

6.2-11



NETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAME: _QUIK

PURPOSE:

This' is an unconditionally stable explicit method of solution which allows

SINDA users to employ computation intervals larger than CNFRWD. The

method of solution is a 50-50 con_)ination of exponential prediction

(_EXPN) and Du Fort-Frankel (CNDUFR). For a temperature rising situation

the ONEXPN routine tends to undershoot while CNDUFR tends to overshoot;

however, CNQUIK falls between the two and generally yields better results
than either CNEXPN or CNDUFR.

RESTRICTIONS:

The short pseudo-compute sequence is required. The control constant re-

quirements for CNEXPN or CNDUFR apply to CNQUIK.

CALLING SEQUENCE: CNQUIK

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires two locations for each diffusion node, plus one
location for each arithmetic node.

©

\

6.2-12



0
OUTPUT

•EXECUTION SUBROUTINE N#_MES: CSGDMP or RCDUMP

PURPOSE:

These subroutines are designed to aid in the checkout of thermal problem

data decks. Theycall upon VARIABLES l (CSGDMP also calls upon OUTPUT

CALLS) and then print out each actual diffusion node number with the capaci-

tance and CSGMIN value of the node. For each node they iaentify the

attached conductors_by actual conductor number, list the type and conductance
value and the actual number and type ofthe adjoining node. Either the SPCS

or LPCS option may be used. While the LPCS option allows every conductor

attached to a node to be identified, the SPCS option only identifies con-

ductors for the first node number on which they occur. After the diffusion

nodes are processed, the connection information for the arithmetic nodes is

listed. After listing the above information, control passes to the next
sequentially listed subroutine.

RESTRI CT IONS:

The CSGDMP subroutine is called in the EXECUTION block, while RCDUMP can

be called from the OUTPUT CALLS block. Never call either subroutine from
VARIABLES l or CSGDMP from OUTPUT CALLS.

CALL ING SEQUEN CE: CSGDMP or RCDUMP

DYNAMIC STORAGE REQUIREMENTS:

Calling either of these routines will cause one dynamic storage location

for each node and one location for each conductor to be permanently captured
(i.e., they are not returned to the "pool" after the subroutines are com-

pleted). This requirement results from the internal call to subroutine
NNREAD.

i

'\ , ,

6.2-13



(-_ 6.3, ARITHMETIC SUBROb_rlNES

Addition Operati on

ADD
ADDFIX

ADDARY

ARYADD

SUMARY

Sums a variable number of floating point numbers

Sums a variable number of integer numbers
Adds the corresponding elements of two specified length

arrays to form a third array

Adds a constant value to every element in an array to

form new array

Sums an array of floating point values

Subtraction Operati on

SUB

SUBFIX

SUBARY

ARYSUB

Subtracts a variable number of floating point numbers

Subtracts a variable number of integer numbers

Subtracts the corresponding elements of one array from

another to form a third array

Subtracts a constant value from every element in an

array to form a new array

Multi plicati on Operati on

_LTPLY

MPYFIX

MPYARY

ARYMPY

SCLDEP

SCLIND

CMPXMP

C_YI

Multiplies a variable number of floating point numbers

Multiplies a variable number of integer numbers

MultiDiies the corresl)onding elements of two arrays to
form a third

Multiplies each element of an array by a constant value

to form a new array

Multiplies the dependent or independent variables of a

doublet type interpolation array

Multiplies two complex numbers or the corresponding

elements of arrays of complex numbers

Divlsi on Operati on

DIVIDE

DIVFIX

DIVARY

ARYDI V

ARYINV

ARINDV

ADDINV

ADARIN

CMPXDV

CDIVI

Performs a division of floating point numbers

Performs a division of integer numbers

Divides the elements of one array into the corresponding

elements of another array to produce a third array

Divides each element of an array by a constant value

to produce a new array

Inverts each element of an array in its own location

Divides each element of an array into a constant value

to form a new array
Calculates one over the sum of the inverses of a

variable number of arguments

Calculates one over the sum of inverses of an array
of values

Divides two complex numbers or the corresponding

elements of complex numbers

6.3-3

6.3-3

6.3-3

6.3-3

6.3-3

6.3-4

6.3-4

6.3-4

6.3-4

6.3-5
6.3-5
6.3-5

6.3-5

6.3-7

6.3-7

6.3-7

6.3-7

6.3-8

6.3-8

6.3-8

6.3-8

6.3-9

6.3-I



•ADDITION OPERATION

© SUBROUTINE NAMES:

PURPOSE:

ADD or ADDFIX

To sum a variable number of floating point or integer numbers respectively.

S= r.Xi , i = 1,2,3,...,- , n _> 2

RESTRICTIONS:

Subroutine ADD is for floating point numbers while subroutine ADDFIX is

for integers.

CALLING SEQUENCE:

or

ADD(XI,X2jX3,.. .jXn, S)

ADDFIX(XI ,X2,X3, ...,X,,S)

SUBROUTINE NAMES: ADDARY or ARYADD

PURPOSE:

Subroutine ADDARY will add the corresponding elements of two specified

length arrays to form a third array. Subroutine ARYADDwill add a con-

stant value to every element in an array to form a new array. Their

respective operations are:

Ai = Bi + Ci , i = IPV

or Ai = Bi + C , i = l_/

REST RICTIONS:

All data values to be operated on must be floating point numbers. The

array length N must be an integer.

CALLING SEQUENCE:

or

ADDARY(N.B(DV) ,C(DV) ,A(DV) )

ARYADD(N, B (DV) ,C,A (DV) )

The answer array may be overlayed into one of the input array areas.

SUBROUTINE NAME: SUMARY

PURPOSE:

To sum an array of floating point values:

S-r Ai , i - l,N

RESTRICTIONS:

4k The values to be summed must be floating point numbers and the array

length N must be an integer.

CALLING SEQUENCE: SUMARY (N,A{DV),S)

6.3-3  Precedingpageblank
. ..... ~.........



SUBTRACTI_ OPERATI_

SUBROUTINE NAMES: SUB or SUBFIX

PURPOSE:

To subtract a variable number of floating point or integer numbers

respectively,

R =.I'- E xi , i : 1,2,3,...,n , n > l

RESTRI CTIONS:

Subroutine SUB is for floating point numbers while the subroutine SUBFiX

is for integers.

CALLING SEQUENCE: SUB(Z, XI,X2,X3,...,Xn,R)

or SUBFIX(Z, Xl,X2,X_,...,X,,R)

SUBROUTINES NAMES: SUBARY or ARYSUB

PURPOSE:

Subroutine SUBARY will subtract the Corresponding elements of one array

from another to form a third array. Subroutine ARYSUB will subtract a

constant value from every element in an array to form a new array. Their

respective operations are:

or

Ai : Bi - Ci , i : I,N

Ai = ai - C , i = I_V

RESTRICTIONS:

All data values to be operated on must be floatingpoint numbers.

array length N must be an integer.

CALLING SEQUENCE: SUBARY (N,B (DV) ,C(DV) ,A(DV) )

The

or ARYSUB(N,B(DV) ,C,A(DV) )

The answer array may be overlayed into one of the input array areas.

f--.,

6.3-4



MULTIPLICATI_ OPERATION

SUBROUTINE NAMES: HLTPLY or MPYFIX

PURPOSE:

To nlultiply a variable number of floating point or integer numbers
respectively.

P = XI*XZ*X3...*Xn , n >__2

RESTRICTIONS:

Subroutine MLTPLY is for floating point numbers while subroutine MPYFIX

is for integers.

CALLING SEQUENCE:

SUBROUTINE NAMES:

PURPOSE:

or

MLTPL Y(xl _x2, x3 , . . . , Xn,P)

MPYFIX(XI ,X2,X3 , . . . ,Xn, P )

MPYARY or ARYMPY

Subroutine MPYARY Will multiply the corresponding elements of two arrays

to form a third. Subroutine ARYMPY will multiply a constant value times

each element of an array to form a new array. Their respective operations
are:

Ai = Bi * Ci , i = I,N

or Ai = Bi * C , i = I,N

•RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE: MPYARY (N,B (DV),C (BY),A (DV) )

or ARYMPY(N, B(DV) ,C_A (DV) )

The answer array may be overlayed into one of the input array areas.

6.3-5



MULTIPLICATION OPERATION

SUBROUTINE NAMES: SCLDEP or SCLIND

PURPOSE:

These subroutines will multiply the dependent or independent variables of

a doublet type interpolation array respectively. Their respective
operations are:

Ai : X*Ai , i = 2,4,6,8,...,n

i

RESTRICTIONS:

or Ai = _Ai , i : 1,3,5,7,...,n-I

All values must be floating point. The arrays must be referenced with the

integer count form.

CALLING SEQUENCE: SCLDEP(A(IC) ,X)

or SCLIND(A(IC) ,X)

SUBROUTINE NAMES: CMPXMP or CMPYI

PURPOSE:

These subroutines will multiply two complex numbers or the corresponding

elements of arrays of complex numbers. Their respective operations are:

A + iB = (C + iD)*(E + iF) , i : v/Zi -

or Aj + iBj : (Cj + iDj)*(EJ+iFj) , j = lpV

RESTRICTIONS:

All numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: CMPXMP(C,D,E,F,A_B)

or CMPYI(N,C(DV) ,D(DV) ,E(DV),P(DV) ,A(DV) ,B(DV) )

©

C_

L.

©

6.3-6



DIVISIO( OPERATI_

SUBROUTINE NAMES: DIVIDE or DIVFIX

pURPOSE:

To perform a division of floating point or integer numbers respectively.

C#= Y/S Xi , i = 1,2,3,...,n . n > 1

RESTRICTIONS:

Subroutine DIVIDE is for floating point numbers while DIVFIX is for
integers.

CALLING SEQUENCE: DIVIDE(Y, XI,X2,X3,...,X_,Q)

or DIVFIX(Y, XI,X_,X3,.. .,Xn,Q)

SUBROUTINE NAMES: DIVARY or ARYDIV

PURPOSE:

Subroutine DIVARY will divide the elements of one array into the correspond-

ing elements of another array to produce a third array. Subroutine ARYDIV

will divide each element of an array by a constant value to produce a new
array. Their respective operations are:

Ai = Bi/ci , i : l,_l

or Ai = Bi/c , i : l,Al

RESTRICTiC_S

All data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE : DIVARY (Iv,B (DV),C(DIZ),A (DV) )

or ARYDIV(_v,B(Dv) ,C,A(DV) )

The answer array may be overlayed into one of the input array areas.

k

6.3-7



DIVISI_ OPERATION

SUBROUTINE NAMES: ARYINV or ARINDV

PURPOSE:

Subroutine ARYINV will invert each element of an array in its own location.

Subroutine ARINDV will divide each element of anarray into a constant

value to form a new array. Their respective operations are:

Ai = l.OIAi , i = I,N

or Ai = B/Ci , i , I,N

RESTRICTIONS:

All data values must be floating point nun_ers. The array length N must

be an integer.

CALLING SEQUENCE:

or

ARY INV (N,A (Z)V))

AR INDV (N, C(DV) ,B,A (DV) )

(The ARINDV answer array may be overlayed into the input array area.)

SUBROUTINE NAMES: ADDINV or ADARIN

PURPOSE:

Subroutine ADDiNV will calculate one over the sum of the inverses of a

variable number of arguments. Subroutine ADARIN will calculate one over

the sum of inverses of an array of values. These subroutines are useful

for calculating the effective conductance of series conductors. Their

respective operations are:

or

Y = 1.01(I.1xi + 1./x_ + .. + 1.1xn), n >_ 2

z = ].Olz(l.lXi), i = 1,2,....

RESTRICTIONS:

All data values must be floating point numbers.

be an integer.

The array length _ must

CALLING SEQUENCE: ADDINV (Xl,X2,X3, ...X_, Y)

or ADARIN(N,x(Dv),Y)

',-)

6.3-8



DIVISION OPERATION

SUBROUTINE NAMES: CMPXDV or CDIVI

PURPOSE:

These subroutines will divide two complex numbers or the corresponding

elements of arrays of complex numbers. Their respective operations are:

A + IS = (C + + iF) , j=vCT

or Aj + iBj = (cj + ioj)/(zj + i_'j) . j = l,_v

RESTRICTIONS:

All numbers must be floating point except for N which must be an integer.

CALLING SEQUEN CE: CMPXDV(C, DjE, F,A,B)

or CDIV(NjC(DV) ,D(DV) jE(DV) jF(DV) jA(DV) jB(DV) )

INTEGER/FLOAT ING POINT CON VE RSION

SUBROUTINE NAMES:

PURPOSE:

FLI_AT or FIX or INTRFC

Subroutine FLI)AT will convert an integer to a floating point number.

Subroutine FIX will convert a floating point number to an integer.

Subroutine INTRFC will fracture a floating point number to yield the

largest integer value possible and the remainder or fractional portion as

a floating point number. Their respective operations are:

X=N orN=X orN=x

Y=N

P= X-Y

RESTRICTIONS:

X and F arguments must address floating point values and the N argument
must address an integer.

CALLING SEQUENCE: FL_AT(N,X)

or FIX(X,N)

or INTRFC(X_N,F)

6.3-9



.. °

SIGN CONVERSION

SUBROUTINE NAMES: SETPLS or ARYPLS

PURPOSE:

SETPLS will set the sign positive for a variable number of arguments, while

ARYPLS will set the sign positive for every data value in a specified
length array.

RESTRICTIONS:

The values addressed may be either integers or floating point numbers. The

number of data values in the array (N) must be specified as an integer.

CALLING SEQUENCE: SETPLS(A,B, C... )

or ARYPLS(N,A (Dr))

SUBROUTINE NAMES: SETMNS or ARYMNS

pURPOSE:

SETF_S will set the sign negative for a variable number of arguments, while

ARYMNS will set the sign negative for every data value in a specified
length array.

RESTRICTIONS:

The values addressed may be either integers or floating point numbers. The

number of data values in the array (N) must be specified as an integer.

CALLING SEQUENCE: )

or ARYmS( v,ACov))

C

6.3-10



DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES:

PURPOSE:

SHFTV or SHFTVR or FLIP

Subfoutine SHFTV will shift a sequence of data from one array to another.

Subroutine SHFTVR will shift a sequence of data from one array and place

it in another array in reverse order. Subroutine FLIP will reverse an

array in its own array location. Their respective operations are:

A(i) : B(i) , i : I,N

or A(N-i+l) = B(i) , i = l,N

or A(i)new = A(n-i+2)oid , i = 2,n+l

RESTRICT I ONS:

The

SHFTV(N,B(DV) ,A(DV) )

SHFTVR(N,B(DV) ,A(DV) )

FLIP(A(IC) )

The data values to be shifted or reversed in order may be anything.

ATmust be an integer.

CALLING SEQUENCE :

or

or

The answer array maynot be overlayed into the input array.

SUBROUTINE NAME: GENARY

PURPOSE :

This subroutine will generate an array of equally incremented ascending

values. The user must supply the minimum value, maximum value, number of

va]ues in the array to be generated and the space for the generated array.

RESTRICTIONS:

All numbers must be floating point.

CALLING SEQUENCE: GENARY(B(DV) ,A(DV) )

B(1)

B(2)

B(3)

= minimum value

: maximum value

= length of array to be generated (floating point)

where

6.3-11



DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAME: BLDARY

PURPOSE:

This'subroutine will build an array from a variable number of arguments

in the order listed. The operation perform.ed is:

Ai -Xi , i = l,n

RESTRICTIONS :

Data may be of any form. The subroutine obtains the integer array length

n by counting the arguments.

CALLING SEQUENCE: BLDARY(A(DV),XI,X2jX3,...,Xn)

SUBROUTINE NAME: BRKARY or BKARAD

PURPOSE:

These subroutines will distribute values from within an array to a variable

number of arguments in the order listed. The first places the value into
the location while the second adds it to what is in the location.

Respective operations are:

Xi = Ai

or

RESTRICT!ONS:

, i = l,n

xi = xi + ni , i = Ip:

Floating point numbers must be used for BKARAD. The integer array length

n is obtained by the routines by counting the number of arguments.

CALLING SEQUENCE: BRKARY(A(DV) ,XI, X2,X3_..., Xn)

or BKARAD( A(DV) ,XI ,X2,X_, ...,Xn)

SUBROUTINE NAMES: ST_ARY or ARYSTR)

PURPOSE:

These subroutines will place a value into or take a value out of a specific

array location respectively. Their respective operations are:

Ai : X ,

or X = Ai ,

RESTRICTIONS:

The value may be anything but N must be an integer.

CALLING SEQUENCE: ST_ARY(NjX, A(DV))

or ARYST_(N,X,A(DV))

6.3-12

i:N ,N>O

i:N ,N>O

0

©

0



©

DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: STFSEP or SCALE

Subroutine STFSEP will place a constant value into a variable number of

locations. Subroutine SCALE will 14tilize a constant value to multiply a

vari'able number of arguments, each having a location for the product.

The respective operations are:

RESTRICTIONS:

i = 1,2,3,...;_

i - 1,2,3,...#_

STFSEP may be used to move any desired value but SCALE can only be used

for floating point numbers.

STFSEP (Y, xI ,x2, x3,. .. , Xn)

or SCALE(Y, Zl,XI,Z_,X_,...,Zn,Xn)

CALLING SEQUENCE:

SUBROUTINE NAMES: STFSEq or STFSqS

PURPOSE:

Both subroutines will stuff a constant data value into a specified length

array or group of sequential locations. STFSEQ expects the constant data

value to be in the first array location while STFSQS requires it to be

supplied as an additional argument. The respective operations performed

are:

Ai = A1 , i : 2 #Y

RESTRICTIONS:

or Ai - B , i : I,N

N must be an integer but the constant data value may be integer, floating

point or alpha-numeric.

STFSEQ(4(DV) .,N)

or STFSQS(B,N,A(DV) )

CALLING SEQUENCE:

• 6.3-13



DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: SLDARY or SLDARD

PURPOSE:

These subroutines are useful for updating fixed length interpolation arrays

during a transient analysis. The array data values are moved back one or

two positions, the first one or two values discarded and the last one or

two values updated respectively. The "sliding array" thus maintained can
then be used with standard interpolation subroutines to simulate transport

delay phenomena. Their respective operations are:

and

Ai = Ai+l , i = 2,N

Ai=X , i=N+1

or Ai = Ai+2 , i = 2,N-I

and Ai = X and Ai+l = Y , i = N

RESTRICTIONS:

The addressed arrays must have the array integer count N as the first value.

For SLDARD, N must be even.

CALLING SEQUENCE: SLDARY(X,A(IC))

SLDARD(XjY, A(IC))

SUBROUTINE NAME: ST_}RMA

PURPOSE:
i

This subroutine is useful for constructing historical data arrays during a

transient analysis. It can take the place of several ST_ARY calls. The

operations are as follows:

A1 (N) : Xl

A2(N) : X_

A3(N) : X3

RESTRICT IONS:

N must be or reference an integer, the X's may be any value.

CALLING SEQUENCE: ST_RMA(N,X],A1 (DIZ),x_,me (Dv) ,x3, A3 (DIZ),... )

©

©

0

6.3-14



7
r

SINGLET/DOUBLET ARRAY GENERATION

SUBROUTINE NAMES : SPLIT or

PURPOSE:

The_e subroutines separate a doublet array into two singlet arrays or com-

bine two singlet arrays _into a doublet array respectively. Their
respective operations are:

or

Bi = A2i-1 , i - I_V

Ci = A2i , i = I,N

A2i-1 = Bi . i = IJ/

A2i =Ci , i = I_V

RESTRICTIONS:

The arrays may contain any values but ,V must be an integer. N is the length

of the B and C arrays and the A array mus_ be the length of 2N.

CALLING SEQUENCE: SPL IT(#,A (Dr; ,B (Dr;, C(DV) )

SUBROUTINE NAME:

or J_)IN(N,B(DV),C(DV), A(DV) )

SPREAD

i

PURPOSE:

This subroutine applies interpolation subroutine DIDIDA to singlet arrays

to obtain an array of dependent variables versus an array of independent

variables. It is extremely useful for obtaining single_ arrays of various

dependent variables with a corresponding relationship to one singlet

independent variable array. The dependent variable arrays thus con-

structed can then be operated on by array manipulation subroutines in

order to form composite or complex functions. Doublet arrays can first

be separated with subroutine SPLIT and later reformed with subroutine J_IN.

RESTRICTIONS:

All data values must be floating point except A/which must be the integer

length of the array to be constructed. The arrays fed into DIDIDA for

interpolation must start with the integer count. X is for independent and

_" is for dependent. _T is for input and # is for output.

CALLING SEQUENCE: SPREAD(N,X(IC) ,.T(IC) ,XI(DV) ,Y#(DV) )

6.3-15



COMPARISON OPERATION

SUBROUTINE NAMES: MAXDAR or MXDRAL

PURPOSE:

These subroutines will obtain the absolute maximum difference between

corresponding elements of two arrays of equal length N. The array values

must be floating point numbers. The operation performed is

D= I Ai - Bi I , i = I_V
max

Subroutine MXDRAL also locates the position P between l and N where the
maximum occurs.

RESTRI CTI ONS:

The IVargument must be an integer. The D and P arguments are returned as

floating point numbers.

CALL ING SEqUENCE: MAXDAR(N,A(DV) _,B(DV) ,D)

or MXDRAL(N,A(DV) ,B(DV) ,DjP)

©

0



,.-"

\

6..4 INTERPOLATION/EXTRAPOLATION SUBROUTINES

Laqranqi an Interpoi ation

LAGRAN Uses one doublet array

LGRNDA Uses two singlet arrays

Linear Interpolation -,Single Variable

DiDEGI

DIDIDA

DIDIWM

DIIMDA

DIMDGI

DIMIDA

DIMIWM

DIMIMD

DIDGII }
DIDIIM

DIDIMI

DllDAI I
DIIDIM

DIIMDI

DIIMDI }
DIIMWM

DIIMIM

Uses one doublet array

Uses two singlet arrays

Uses DIDEGI and multiplies the interpolation by the
Z value

Uses DIDIDA and multiplies the interpolation by the
Z value

Uses the arithmetic mean of two input values as the

independent variable; uses a doublet array

Same as DIMDGI except two singlet arrays are used

Uses DIMDGI and multiplies the interpolation by the
Z value

Uses DIMIDA and multiplies the interpolation by the
Z value

Performs interpolation on an array of X's to obtain

an array of Y's

Identical to DIDGII,DIDIIM and DIDIMI, except for

the use of singlet arrays and call on DIDIDA

These are indexed subroutines which use the arithmetic

mean of two input values as the independent variable

Linear Interpolation - Two Single Variables

CVQIHT _ Performs two single variable linear interpolations

CVQIWM J

Linear Interpolations - Variables l Calls

VARSCM

VARCCM

VARCI

VARC2

VARGSM

VARGCM

VARGI

VARG2

\

Subroutines set up as Variables l calls when possessing
the SIV and DIV nmemonic codes in the nodal data

block

Subroutines set up as Variables 1 calls when processing
the SIV and DIV mnemonic codes in the conductor data

block t

Parabolic Interpolation - Single Variable

DIDEG2

BID2DA

DID2WM

Uses LAGRAN and a doublet array

Uses LGRNDA and two singlet arrays

Uses LAGRAN and multiplies the interpolation by the
Z value

P_ge

6.4-4
6.4-4
6.4-5

6.4-5

6.4-5

6.4-6

6.4-6

6.4.6

6.4-7

6.4-7

6.4-8

6.4-8

6.4-9
6.4-9
6.4-9

6.4-I



DI2MDA

DIMDG2

DIM2DA

DIM2WM

DIM2MD

Uses LGRNDA and multiplies the interpolation by the

Z value

Uses the arithmetic mean of two input values as

independent variable; uses doublet array

Same as DIMDG2 except two single arrays are used

Uses DIMDG2 and multiplies the interpolation by the
Z value

Uses DIM2DA and multiplies the interpolation by the

Z value

DI2CYL
DAI2CY }

DIIMCY
DAllMC}

Cyclical Interpolation Arrays

DIICYL_ Reduces core storage requirements and uses linear
DAIICYJ interpolation

Identical to DIICYL and DAIICY except that parabolic

interpolation is used
Identical to DI2CYL and DAI2CY except that the inter-

polation is multiplied by the value in address Z

DAI2CY_ Identical to DIIMCY and DAIIMC except that parabolic

DAI2MC_ interpolation is used

Point Slope Interpolations

GSLBPE Generates a slope array so that point slope interpola-

tion can be used

PSINTR_ Point slope interpolation
PSNTWM i

Bivariate Interpolations

BVSPSA_
BVSPDAJ
BVTRNI
BVTRN2 }

D2DEGI

D2DEG2

D2DIWM

D2D2WM

D2MXDI_
D2MXD2J

D2MXIM
D2MX2M }

Uses an input Y argument to address a bivariate

array
Constructs a bivariate array of Y's versus X and Z

from an input array of Z's versus X and Y

Performs bivariate linear interpolation

Performs bivariate parabolic interpolation

Uses D2DEGI and multiplies the interpolation by the
W value

Uses D2DEG2 and multiplies the interpolation by the
W value

Identical to D2DEGI and D2DEG2 except that the arith-

metic mean of two X values is used as the X

independent variable
Identical to D2DIWM and D2D2WM except that the arith-

metic mean of two X values is used as the X

independent variable

Tri vari ate Interpol ati ons

Page

6.4-9

6.4-I0

6.4-10

6.4-I0

6.4-I0

6.4-11

6.4-11

6.4-12

6.4-12

6.4-13

6.4-13

6.4-14

6.4-14

6.4-15

6.4-15

6.4-15

6.4-15

6.4-16

6.4-16

©

D3DEG1
D3D1WM}

Performs trivariate linear interpolation

Linear Extrapolation

ITRATE Linearly extrapolates a new guess on the basis of
Zero error

6.4-2

6.4-17

6.4-18



Q
IAGRANGIM_ INTERPOLATION

SUBROUTINE NAMES: LAGRAN or LGRNDA

PURPOSE:

These subroutines perform Lagrangian interpolation of up to order 50. The

first requires one doublet array of X, Z pairs while the second requires
two singlet arrays, one of X's and the other of Y's. They contain an

extrapolation feature such that if the X value falls outside the range of

the independent variab]e the nearest dependent Y variable value is returned
and no error is noted.

n n
X - Xi

z= P. (x)= n
k=O i=O Xk - Xi

i#k

• n = l,2,3,...,50max.

RESTRICTIONS:

All values must be floating point except Nwhich is the order of interpola-

tion plus one and must be an integer. The independent variable values

must be in ascending order.

CALLING SEQUENCE: LAGRAN (X ,Y,A (IC) ,N)

or LGRNDA(X, Y,AX(IC) ,AY(ZC) ,Z)

NOTE:

A doublet array is formed as follows:

XI ,Yl,X2, Y2, X3, Y_, .••,XN ,2N

and singlet arrays are formed as follows:

Xl ,X2, X3,. ..,XN

ZI ,Z2,Y3 ,. ..,ZN

6.4-3



LINEAR INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAME: DIDEGI

PURPOSE:

This" subroutine performs single variable linear interpolation on a doublet

array of X,1' pairs.

RESTRI CTIONS:

All values must be floating point numbers. The X independent variable

values in the doublet array must be in ascenaing order.

CALLING SEQUENCE: DIDEGI (XjA(IC) ,Y)

SUBROUTINE NAME:

where: X = Input value of independent variable

A = Doublet array of X,Y pairs

= Output value of dependent variable

DID1 DA

PURPOSE:

This subroutine performs single variable linear interpolation on a pair

of singiet arrays containing corresponding values of X and Y.

RESTRICTI_S:

All values must be floating point numbers. The X independent variable

values in tne AX array must be in ascending order. The number of values

in the AX and AY arrays must be the same.

CALLING SEQUENCE: DIDIDA(X, AX(IC) ,A.Y(IC)_Y)

where: X = Input value of the independent variable

AX=Singlet array of X values

AY = Singlet array of Y values corresponding
to the X values in AX

= Output value of the dependent variable

©

©

6.4-4



LINEAR INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: DIDIWM or DIIMDA

PURPOSE:

These subroutines perform single variable linear interpolation by calling

on DIDEGI or DIDIDA respectively. However, the interpolated answer is

multiplied by the values addressed as Z prior to being returned as Y.

RESTRICTIONS:

Same as DIDEGI or DIDIDA and Z must be a floating point number.

CALLING SEQUENCE:

SUBROUTINE NAMES:

PURPOSE:

or

DID1WM(X, A(IC) ,Z,Y)

D11MDA(X,A.X(IC) ,AY(IC) ,Z,Y)

DIMDGI or DIMIDA

These subroutines use the arithmetic mean of two input values as the inde-

pendent variable for linear interpolation. They require a doublet or two

singlet arrays respectively.

RESTRICTIONS:

See DIDEGI or DIDIDA as they are called on respectively.

CALLING SEQUENCE: D1MDGI (XI,X2,A (IO) ,Y)

or DIMIDA(XI,X_.,AX(ZC) ,AY(!C) ,Y)

6.4-5



LINEAR INTERPOLATIO_ - SINGLE VARIABLE

SUBROUTINE N_MES:

PURPOSE:

DIMIWM or DIMIMD

These subroutines use the arithmetic mean of two input values as the inde-

pendent variable for linear interpolation. The interpoiated answer is

multiplied by the Z value prior to being returned as Y.

RESTRICTIONS:

Same as DIMDGI or DIMIDA and % must be a floating point number.

CALL ING SEQUENCE:

SUBROUTINE NAMES:

PURPOSE:

DIMIWM(XI,X2,A(_rc) ,Z,Y) or DIMIMD(XI,X2,AX(IC) ,AY(IC) ,R,Y)

DIDGII or DIDI!M or DIDIMI

/

These subroutines perform single variable linear interpolation on an array

of X's to obtain an array of Y's. DIDIIM multiplies all interpolated

values by a constant Z value while DIDIMI allows a unique Z value for each
X value. They all call on DIDEGI.

RESTRICTIONS:

The number of input X's must be supplied as the integer ;_;and agree with

the number of Y and z locations where applicable. Z values must be float-

ing point numbers.

CALLING SEQUENCE:

SUBROUTINE NAMES:

PURPOSE:

or

or

DI DGI I(N,X CDV) ,A( IC) ,Y CDV) )

DID1 IM(N, X(DV) ,A(IC) ,Z,Y(DV) )

DIDlMI (N.X (DV)jA (.TO)j Z (DV),Y (_V) )

DIIDAI or DIIDIM or DIIMDI

These subroutines are virtually identical to DIDGII, DIDIIM and DIDIMI

respectively. The difference, is that they require singlet arrays for
interpolation and call on DIDIDA.

RESTRICTIONS:

Same as DIDGII, DIDIIM and DIDIMI.

CALL ING SEqUEN CE: D11DAI (N, X(Dv) ,AX(IC) ,AY(IC) ,.Y(DV))

or DIIDIM(N,X(DV) ,AX(IC) jA.Y(IC),Z,Y(DV) )

or DIIMDI(N_X(DV),AX(_rC),A.Y(IC),Z(DV)_Y(DV) )

6.4-6

_



C}
LINEAR INTERPOLATION-SiNGLE VARIABLE/TWO SINGLE VARIABLES

SUBRO'GTINE NAMES: DIIMDI or DIIMWM or DIIMIM

PURPOSE:

These are indexed subroutines which use the arithmetic mean of two input

values as the independent variable for linear interpolation. The array of

answers (Y) produced are left as is (DIIMDI), are all multiplied by a

single factor (DIIMWM), or each answer is multiplied by a separate factor.

RESTRICTIONS:

The interpolation array addressed must have an even number of input values

and the independent variables must be in ascending order. These routines

call up DIDIWM. N is the number of times the operation is to be performed.

CALLING SEQUENCE: DIlMDI(N, XI(DV),X2(DV),A,Y(D_)

or DIIMWM(N, XI(DV),X2(DV),A,Z,Y(DV))

or DIlMIM(N,XI(DV)jX2(DV),A,Z(DV),Y(OV))

LINEAR INTERPOLATION -TWO SINGLE VARIABLES

SUBROUTINE NAMES: CVQIHT or CVQIWM

PURPOSE:

These subroutines perform two single variable linear interpolations. The

interpolation arrays must have the same independent variable X and dependent

variables of, let's say, R(X) and S(X). Additional arguments of Y, Z and

2 complete the data values. The post interpolation calculations are

respe cti vely:
Z : S(X)*(RfX)-T)

or y = Z*S(X)*(RCX)-T)

RESTRICTIONS:

Interpolation arrays must be of the doublet type and have a common indepen-

dent variable. All values must be floating point numbers.

CALLING SEQUENCE : CVQIHT(X, AR(%C) ,AS(IC) ,T,Y)

or CVQIWM(X, AR(IC) ,AS(IC) ,T,Z,Y)

6.4-7



LINEAR INTERPOLATION - VARIABLES l CALL

SUBROUTINE NAMES: VARCSM or VARCCM or VARCI or VARC2

PURPOSE:

The_e are linear interpolation subroutines carried over from CINDA-3G.

Mnemonic options utilized in the NODE DATA block caused insertion of these

calls into the VARIABLES l block. This does not apply for the SINDA

program but the routines remain as they could be called directly by a user.

The routines are similar in that the C argument is a function of the T

argument which is the independent variable for interpolation from the

doublet array A argument, answer to which is multiplied by the factor F

argument. Where two A's and E's are referenced in the same call, separate

interpolations and multiplications are performed and the answers summed.

RESTRICTIONS:

VARCI and VARC2 reference only one A argument for interplation, the other

A-4 position arguments are multiplied together to form their contribution to
the answer.

CALLING SEQUENCE: VARCSM (T, C, A(IC), E)

VARCCM (T, C, AI(_C), 41, A2(IC), F2)

VARCI (2, C, A, El, A2(IC), F2)

VARC2 (T, C, AI(IC), FI, A, F2)

SUBROUTINE NAMES: VARGSM or VARGCM or VARGI or VARG2

PURPOSE :

As above, these routines are carried over from the CINDA-3G program except

that they pertained to the conductor block. The mean temperature of the

two 9 arguments is used as the independent variable for interpolation when

VARGSM is called except if the 4 argument is negative, in which case the TI

argument is used. The other three routines use the TI for AI and/or T2 for
Ag to obtain two partial values (as described above) which are then com-
bined as one over the sum of the inverses:

G = I.O/(I.O/GI + 1.O/G2)

RESTRICTIONS:

The A arguments must reference the integer count of doublet interpolation

arrays.

CALLING SEQUENCE: VARGSM (o, TI, T2, A(IC), F)

VARGCM (G, T1, 22, AI(IC), F1, A2(IC), F2)

VARGI (G, 21, T2, A, F1, A2(IC), 42)

VARG2 (G, 2_, I'2, At(It), El, A, E_)

_

,..j

6.4-8



PARABOLIC INTERPOLATI_ - SINGLE VARIABLE

SUBROUTINE NAMES: DIOEG2 or DID2DA

PURPOSE:

These subroutines perform single variable parabolic interpolation. The

first requires a double array of X, _ pairs while the second requires

singlet arrays of X and Y values. They call on subroutines LAGRAN and

LGRNDA respectively.

RESTRICTIONS:

See LAGRAN or LGRNDA respectively.

CALLING SEQUENCE: DIDEG2(X,A(IC),Y)

or DID2DA(X, AX(IC),AY(IC),Y)

SUBROUTINE NAMES: DID2WM or DI2MDA

PURPOSE:

These subroutines perform single Variable parabolic interpolation by

calling on LAGRAN or LGRNDA respectively. However, the interpolated

answer is multiplied by the value addressed as Z prior to being returned
as Y.

RESTRICTIONS:

Same as LAGRA_ or LGRNDA and Z must be a floating point number.

CALLING SEQUENCE: DIDZWM(X,A(I¢) ,Z,.1')

or D12MDA(x,_l{Ic) ,A_{IC ) , Z,Y)

.k

6.4-9



PARABOLIC INTERPOLATiO_ - SINGLE VARIABLE

SUBROUTINE NAMES: DIMDG2 or DIM2DA

PURPOSE:

These subroutines use the arithmetic mean of two input values as the inde-

pendent variable for parabolic interpolation. They require a doublet or

two singlet arrays respectively.

RESTRICTIONS:

See LAGRAN or LGRNDA as they are called on respectively.

CALLING SEQUENCE:

SUBROUTINE NAMES:

PURPOSE:

or

DlMDG2 (x1,X2, A (IC), I')

DlM2DA(XI, X2, AX(IC) ,AZ(IC) ,Y)

DIM2WM or DIM2MD

These subroutines use the arithmetic mean of two input values as the inde-

pendent variable for parabolic interpolation. The interpolated answer
is multiplied by the z value prior to being returned as i'.

RESTRICTIONS:

Same as DIMDG2 or DIM2DA and Z must be a floating point number.

CALLING SEQUENCE:

or

O lM2WM(X/,X2,A(IC), Z,1")

OlM2MO (Xl,X2,AXCIC) ,AY(IC) ,Z,1")

0

©

6.4-10

©



CYCLICAL INTERPOLATIO_I ARRAYS

SUBROUTINE NAMES: DIICYL or DAI ICY

PURP OSE:

These subroutines reduce core storage requirements for cyclical interpolation

arrays. The arrays need cover one period only, and the period (PR) must be

specified as the first argument. Linear interpolation is performed, and

the independent variable must be in ascending order.

RESTRICTIONS:

All values must be floating point. Subroutine INTRFC is called on by both

DllCYL and DAIICY, then DIDEGI or DIDIDA respectively.

CALLING SEQUENCE:

SUBROUTINE NAMES:

PURPOSE:

or

D1 ICYL(PR, X,A(IC) ,Y)

DAI 1CY(PR,X, AX (IC),AY (IC),Y)

DI2CYL or DAI2CY

These subroutines are virtually identical to DIICYL and DAIICY except that

parabolic interpolation is performed.

RESTRICT IONS:

See DIICYL and DAIICY. Subroutines LAGRAN and LGRNDA respectively are
cal led on.

CALLING SEQUENCE: DI2CYL (PR,X,A (IC), Y)

or DA12CY(PR, X, AX(IC) ,Al(IC) ,Y)

i ,

6.4-11



CYCLICAL INTERPOLATION ARRAYS

SUBROUTINE N_ES: DllMCY or DAIIMC

PURPOSE:

These subroutines are virtually identical to DIICYL and DAIICY except that

the interpolation is multiplied by the floating point @ value prior to
being returned as Y.

RESTRICTI_S:

Call on subroutines DIDEGI and DIDIDA respectively.

CALLING SEQUENCE:

SUBROUTINE NAMES:

PURPOSE:

or

D1 IMCY(PR, X,A(IC) ,Z,Y)

DAI 1MC (PR,X,AX(IC) ,AY (IC),Z,Y)

DI2MCY or DAI2MC

These subroutines are virtually identical to DIIMCY and DA!IMC except that

parabolic interpolation is performed.

REST RICT IONS:

Calls on subroutines LAGRAN and LGRNDA respectively.

CALL ING SEQUENCE : DI2MCY (PR,X,A (IC),Z, Y)

or DAI2MC(PR, X,AX(ZC) ,AZ(IC) ,Z,Z)

©

©

0

6.4-12



%

POINT SLOPE INTERPOLATION

SUBROUTINE NAMES: GS !

PURPOSE:

This-subroutine will generate a slope array so that point slope interpola-

tion subroutines can be used instead of standard linear interpolation sub-

routines. The user must address two singlet type arrays and a singlet

slope array will be produced.

RESTRICTIONS:

The x independent variable array must be in ascending order. All arrays

must be of equal length and contain floating point numbers.

CALLING SEQUENCE:

GSL f)PE(AX(iO) ,A.Y(IC),AS(IO) )

SUBROUTINE NAMES: PSINTR or PSNTWM

PURPOSE:

These subroutines perform linear interpolation and require arrays of the Z

points and slopes which correspond to the independent variable x array.

All values must be floating point numbers. PSNTWM multiplies the inter-

polated answer by Z prior to returning it as i'.

RESTRICTIONS:

The independent X and dependent Z and slope arrays must be of equal length.

CALLING SEQUENCE :

PSINTR(X, AX(IC) _AZ(IO) ,AS(IC) ,Z)

or PSNTWM(X, AX(IC) ,AY(IC) ,AS(IC) ,Z,Z)

6.4-13



BIVARIATE INTERPOLATION

SUBROUTINE NAMES: BVSPSA or BVSPOA

PURPOSE:

These subroutines use an input i' argument to address a bivariate array and

pull" off a singlet array of %'s corresponding to the X's or pull off a

doublet array of X, Z values, respectively. The integer count for the

constructed arrays must be exactly N or 2*N respectively. To use the

singlet array for an interpolation call the X array can be reached by

addressing the N in the bivariate array.

RESTRICTIONS: " " _.....

As stated above, and all values must be floating point.

CALLING SEQUENCE:

SUBROUTINE NAMES:

or

BVSPSA(Y, BA (Ic) , AZ (It))

BVSPDA(Y, BA (IC) ,AXZ.(IC) )

BVTRNI or BVTRN2

PURPOSE:
• . . -.... ._ .

These subroutines construct a bivariate array of Y's versus X and Z from

an input bivariate array of Z's versus Xand Y. BVTRNI should be used when

the % values increase with increasing Y values and BVTRN2 when the Z values

decrease with increasing Y values.

RESTRICTIONS:

The user must appropriately place the X and Z values and spaces for Y's in

the array to be constructed. These subroutines will fill the Y spaces.

The new array can differ in size from the old. Subroutine DIDEGI is called

and its linear extrapolation feature applies.

CALLING SEQUENCE:

or

BVTRNI (BA@(IC) ,BAN(IC) )

B VTRN2 (BA¢(IC), BAN (IC))

!

6.4-14



BIVARIATE INTERPOLATI_

SUBROUTINE NAMES: D2DEGI or D2DEG2

PURPOSE:

These subroutines perform bivariate linear and parabolic interpolation re-

spectively. The arrays must be formatted as shown for Bivariate Array

Format, (Section 3.3.3.3).

RESTRICTIONS: For D2DEGI , N_2,M_2

For D2DEG2 , N_>3,Mz3

See Bivariate

Array Format

CALLING SEQUENCE: D2OEGI (X, YjBA(IC) • Z)

or D2DEG2(x,X, BA(IC) ,Z)

SUBROUTINE NAMES: D2DIWM or D2D2WM

PURPOSE:

These subroutines perform bivariate linear or parabolic interpolation by call-

ing on D2DEGI or D2DEG2 respectively. The interpolated answer is multiplied

by the w value prior to being returned as Z.

RESTRICTIONS:

Same as D2DEGI or D2DEG2 and W must be a floating point value.

CALLING SEQUENCE: D2D lWM (X,Y,BA (IC),W,Z )

or D202WM(X, Y, BA (IC), Wj Z )

6.4-15



,/

B!VARIATE INTEr,POLATION

SUBROUTINE NAMES:

PURPOSE:

D2MXDI or D2MXD2
, ,,

lhese subroutines are virtually identical to D2DEGI and D2DEG2 except that

the arithmetic mean of two x values is used as the X independent variable

for interpolation.

RESTRICTIONS:

Same as D2DEGI or D2DEG2.

CALLING SEQUENCE:

"C

D2MXDI (Xl,x2, Y,BA (IC),Z)

D2MXD2 (Xl ,X_ ,!',BA(IC) ,Z )

D2MXIM or D2MX2M

or

SUBROUTINE NAMES:

PURPOSE:

These subroutines are virtually identical to D2DIWM and D2D2WM except that

the arithmetic mean of two X values is used as the X indepenaent variable

for interpolation.

RESTRICTIONS:

Sa_ as D2DIWM and D2D2WM.

CALLING SEQUENCE: D2MXIM(XI,X_,Y, BA(IC),W,Z)

or D2MX2M(XI,X2,Y, BA(IC) ,W,Z)

f

6.4-16
,



©

k

TRIVARIATE INTERPOLATION

SUBROUTINE NAMES: D3D£GI or D3DIWM

PURPOSE:

These subroutines perform trivariate linear interpolation. The inte!pola-

tion array must be constructed as shown for Trivariate Array Format." Sub-
routine D2DEGI is called on which calls on DIDEGI. Hence. the linear

extrapolation feature of these routines applies. Subroutine D3DIWM

multiplies the interpolated answer by Y prior to returning it as g.

RESTRICTIONS:

See Trivariate Array Format 5 F must be a floating point value.

CALLING SEQUENCE: D3DEGI (X,Y,Z,_'A(_TC),_')

or D3DIWM(X,Y,Z, TA(IC) ,F,T)

*See Secti on 3.3.3.3.

6.4-_7



LINEAR EXTRAPOLATION

SUBROUTINE NAME:

PURPOSE:

ITRATE

GiveB two old guesses and their corresponding errors, this routine linearly

extrapolates a new guess on the basis of zero error.

........ I

0 __"'_Gn ' Gn Go G

The new guess and error are positioned in the old locations and the extrapo-

lated new guess is returned in the new guess location.

RESTRICTIONS:

If the error function being plotted has changes of slope, the user must

insure that his guesses are quite accurate or divergence will be assured.

CALL ING SEQUEN CE: ITRAT E(ECj GCjEN •GN )

_C.J

6.4-18



©
6.5 MATHEMATICAL SOLUTION SUBROUTINES

Area Integration

SMPINT _ Performs area integration by Simpson's rule and

TRPZD [ trapezoidal rule using equal increments

Page

6.5-3

TRPZBA Performs area integration by the trapezoidal rule
with non uniform increments

6.5-3

Functional Evaluation

CINSIN_ Obtains the sine function of an angle
SINARY i

6.5-4

CINCOS
C_SARY }

Obtains the consine function of an angle or array of

angles

6.5-4

CINTAN }TANARY
Obtains the tangent functions of an angle or array of

angles

6.5-5

ARCS IN
ASNARY I

Obtains the angle corresponding to a sine function

value or array of sine values

6.5-5

ARCCOS
ACSARY }

Obtains the angle corresponding to a cosine function

value or array of cosine values

6.5-6

ARCTAN

ATNARY [

EXPNTL}
ARYEXP

EXPARY

Obtains the angle corresponding to a tangent function

value of array of tangent values

Performs exponential operations

6.5-6

6.5-7

LQGT
L_GTAR }

Obtains the base lO log function of a number or array
of numbers

6.5-7

LOGE
LOGEAR }

Obtains the base e log function of a number or array
of nun_Ders

6.5-8

Roots

SQRQQT
SQROT I }

Obtains the square root of a number or array of
nu_ers

6.5-9

CMPXSR
CSQRI }

Obtains the complex square root of a complex number

or array of complex numbers

6.5-9

NEWTRT }NEWRT4

Utilizes Newton"s methud to obtain one root of a

cubic or quartic equation

6.5-I0

Polynomial/Simultaneous Linear Equations

PLYNML }
PLYARY

PLYAWM

SIMEQN

Calculates the value of the dependent variable for

an Nth order polynomial

Solves a set of linear equations (lO or less) by the

factorized inverse method

6.5-I

6.5-II

6.5-II



Curve Fit/Temperature Derivative

LSTSQU Performs a least, squares curve fit to an arbitrary

number of X,Y pairs to yield a poiynomial
equation of up to order lO

TD_)T. Calculates the time point temperature derivatives
for diffusion nodes

Page

6.5-12

6.5-12

©

0

©

6.5-2



<> AREA INTEGRATI_

SUBROUTINE NAMES:

P.URPOS____[E:

SMP!NT or TRPZD

These subroutines perform area integrations by Simpson's rule and the

trapezoidal rule respectively. Simpson's rule requ|res that an odd

number of points be supplied. If an even number of points is supplied,
SMPINT will apply the trapezoidal rule to the last incremental area but

Simpson's rule elsewhere. The respective operations are:

A = DX*(%l+4Y2+2Y3+4Y4+... +YN)/3

or A = DX*(_I+2Z2+8Y3+2Z4+...+YN)/2

RESTRICTIaNS:

The DX increment must be uniform between all the Y points.

must be floating point except N which must be an integer.

CALLING SEQUENCE: SMPINT(IV,DX, Y(DV),.4)

Al I values

SUBROUTINE NAME:

or TRPZD(N,DX, Z(DV)_A)

" TRPZDA

PURPOSE:

This subroutine performs area integration by the trapezoidal rule. It
should be used where, the DX increment is not uniform between the 2 values

but the corresponding X value for each Z value is known. The •operation
performed is as follows:

A , ½ Z (Xi-Xi-l)*(Zi+Yi-l) , i = 2,N

All values must be floating point numbers except the array length Iv which
must be an integer.

CALLING SEQUENCE: TRPZDA(N, X(DV) ,Z (Pv) ,.4 )

CI:'"

6.5-3



FUNCTIONAL EVALUATION

SUBROUTINE NAHES: CINSIN or SINARY

PURPOSE:

These subroutines obtain the sine function of an angle or array of angles.

Their respective operations are:

A = sine (B)

or AI : sine (Bi,) , i = I,N

RESTRICTIONS:

All angles must be in radians. All values must be floating point numbers

except N which must be an integer.

CALLING SEQUENCE: CINSZN(8.n)
." . .. ,

or SINARY(N jB(DIZ),A(DIZ))

SUBROUTINE NAHES: CINC_S or C_}SARY

PURPOSE:

These subroutines obtain the cosine function of an angle or an array of

angles. Their respective cperations are:

A = cosine (B)

• or Ai = cosine (Bi) , i = I,N

RESTRICTIONS:

All angles must be in tadians. All values must be floating point numbers

except the array length N which must be an integer.

CALLING SEQUENCE: CZNC S(S,A)

or CCSARY(N,B(DV) ,A(DV) )

6.B'4



FUNCTI(_ EVALUATION

SUBROUTINE NAt_ES: CINTAN or TANARY

PURPOSE:

These subroutines obtain the tangent function of an angle or array of

angles. Their respective operations are:

RESTRICTIONS:

A = tangent (B)

or mi = tangent (Bi) , i = l _V

All angles must be in radians. All values must be floating point numbers

except the array length N which must be an integer.

CALLING SEQUENCE: CINTAN (B,A)

or TANARY(N,B(DV) jA(DV) )

SUBROUTINE NAMES: ARCSIN or ASNARY

PURPOSE:

These subroutines ¢btain the angle corresponding to a sine function value

or array of sine values. Their respective operations are:

A = sine'1(B)

or Ai : sine'1(Bi) , i : I,JV

RESTRICTIONS:

The angles are returned in radians with the following limits, -x/2_A<_x/2.

All values must be floating point except for the array length N which must

be an integer.

CALLING SEQUENCE : ARCSIN(B,A) or ASNARY(N,B(DV) ,A(DV) )

/C" _ •
t

6.5-5



FUNCTI_,AL EVALUATION

SUBROUTINE ,N_-,_IES:

PURPOSE:

ARCC,_S or ACSARY

These subroutines obtain the angle corresponding to a cosine function

value or array of cosine values. Their respective operations are:

A = cosine'l(B)

or Ai = cosine-1(Bi) , i = l_V

RESTRICTIONS:

The angles are returned in radians with the following limits, 0 < A < x.

All values must be floating point numbers except for the array le-ngth-N

which must be an integer.

CALLING SEQUENCE: ARCCIBS(B,A) or ACSARY(N,B(DV),A(DV))

SUBROUTINE NAMES: ARCTA.N or ATNARY

PURPOSE:

These subroutines obtain the angle corresponding to a tangent function

value or array of tangent values. Their respective operations are:

A = tangent-l(B)

or Ai = tangent-1(Bi) , i - 1 _Y

RESTRICTIONS:

The angles are returned in radians with the following limits, -x/2<A<x/2.

All values must be floating point numbers except the array length tv
which must be an integer.

CALLING SEQUENCE: ARCTAN(B,A) or ATNARY(N,B(DV) ,A(DV) )

'_,.j

6.5-6



©

(4

FUNCTIONAL EVALUATION

SUBROUTINE NAMES:

PURPOSE:

EXPNTL or ARYEXP or EXPARY

These subroutines perform an exponential operation.
operations are:

A = B0

or ,I = Bi °- i = I,JV

or Ai BIel , i = l,IV

Their respective

RESTRICT IONS:

All values must be positive floating point numbers except iV which must be
an integer.

EXPNTL( CjB,A)

or ARYEXP(Nj CjB(DV) jA(DV) )

or EXPARY(N_C(DV) ,B(DV) _A(DV) )

CALLING SEQUENCE:

SUBROUTINE NAMES: L_GTor LOGTAR

PURPOSE:

These subroutines obtain the base lO log function of a number or array of
numbers. Their respective operations are:

RESTRICTIONS:

A = 1oglo(B)

or Ai = logzo(Bi) , 1 = 1_V

All values must be positive floating point numbers except N which must be
an integer.

LBGT(B,A)

or LOGTAR(NjB(DV) ,A(DV) )

CALLING SEQUENCE:

6.5-7



FUNCTIONAL EVALUATION

SUBROUTINE N_ES: L_E or L_)GEAR

PURPOSE:

These subroutines obtain the base e log function of a number or array of

numbers. Their respective operations are:

A = 1Oge(B)

or Ai = loge(Bi) , i = I,N

RESTRICTIONS:

At1 values must be positive floating point numbers except N which must be

an integer.

CALLING SEQUENCE: L_GE(B,A)

or L_GEAR(N_B(DV) ,A(DV) )

0

• - ,.

©

0

6.5-8



ROOTS

SUBROUTINE NAMES: SQR_T or SqR_)TI

PURPOSE :

These subroutines obtain the square root of a number or array of numbers

respectively. Their respective operations are:

A : +v/B-

or Ai : + Bv/B'T , I : I,N

RESTRICTIONS:

The A and B values must be floating point numbers.

integer.

CALLING SEQUENCE:

The N must be an

SUBROUTINE NAMES:

PURPOSE:

or

SQRF_T (B,A)

SQR(_TI(N,B(DV) ,A(_V) )

CMPXSR or CSQRI

These subroutines obtain the complex square root of a complex number or an

array of complex numbers respectively. Their respective operations are:

RESTRICTIONS:

or Aj + iBj = _OJ + iDj , j -- l,A'

All numbers must be floating point except N which must be an integer.

CALLING SEQUENCE: CMPXSR(C,D,A,B)

or CSQRI(N,C(DV),D(DV),A(DV),B(DV))

6i5-9



ROOTS

SUBROUTINE NAMES : NEWTRT or NEWRT4

PURPOSE:

These subroutines utilize Newton's method to obtain one root of a cubic

or quartic equation respectively. The root must be in the neighborhood

of the supplied initial guess and up to lO0 iterations are performed in

order to obtain an answer within the specified tolerance. If the tolerance

is not met, an answer of lO 3B is returned. The respective equations are:

f(X) = AI+A2_X+A3*X2+A4*X 3 = O.OtZ

or g(X) = AI+A2*X+A3*X2+A4*X3+AS*X _ + O.O±T

where X starts as the initial guess RI and finishes as the final answer RF.
T is the tolerance.

RESTRICTIONS:

All data values must be floating point numbers.

CALLING SEQUENCE: NEWTRT (A(vPV),_, R/,RF)

OR NEWRT4(A(DV) ,T, RI, RF)

0

_j

©

6.5-10



,

POLYNOMIAL/SIMULTA_IEOUS LINEAR EQUATIONS

SUBROUTINE NAMES: PLYNML or PLYARY or PLYAWM

PURPOSE:

These subroutines calculate Y from the following polynomial equation:

Y : AI+A2_X+A3_X2+A4*X3+...+AIV+I*_

=I*W

The number of terms is variable but all the A coefficients must be input

no matter what their value.

RESTRICTI O_S:

All values must be floating point numbers except for the degree of poly-

nomial N which must be integer.

CALLING SEQUENCE:

or

PLYNML( X,AI ,A2,A3 ,...,AN, Z)

PLYARY (N,X,A (DV),£)

or PLYAWM(_V,X,A(DV) ,W,Z)

SUBROUTINE NAME : SiMEqN

PURPOSE:

This subroutine solves a set of up to lO linear simultaneous equations by

the factorized inverse method. The problem size and all input and output

values are communicated as a single specially formatted positive input

array. The array argument must address the matrix order (N) which is input

by the user. The first data value must be the integer order of the set (or

size of the square matrix) followed by the coefficient matrix [A] in column

order, the boundary vector IB} and space for the solution of vector IS}.

[.] Is} IB}
RESTRICTIONS:

The integer count and matrix size must be integers, all other values must

be floating point. The coefficient matrix is not modified by SIMEQN.

Hence, changes to IB} only allow additional solutions to be easily obtained,

CALLING SEQUENCE: SIMEQN(A(DV) )

where the array is formatted exactly as follows:

N,A(I, I),A(I ,2) ,...A (N,N) ,BI ,...,BN, SI ,. ..,SN

6.5-II
i



CURVE FIT/TEMPERATURE DERIVATIVE

SUBROUTINE NAME : LSTSqU

PURPOSE:

This'subroutine performs a least squares curve to fit to an arbitrary

number of X, Y pairs to yield a polynomial equation of up to order lO.

Rather than using a double precision matrix inverse, this subroutine calls
on the subroutine SIMEQN to obtain a simultaneous solution.

RESTRICTIONS:

All values must be floating point numbers except N and M which must be

integers. N is the order of the polynomial desired and is one less than

the number of coefficients desired. M is the array length of the inde-
pendent X or dependent Y values.

CALLING SEQUENCE : LSTSQU (Nj Mj X(DV) _z (Dr), A(Dr))

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires 2*Mdynamic storage core locations.

SUBROUTINE NAME:

PURPOSE:

This subroutine allows the user to calculate the time point temperature

derivatives for diffusion nodes. The single argument must address an
array with as many locations as there are diffusion nodes; the answers are

returned in relative order. The routine utilizes the pseudo-compute
sequence to calculate the time point net q into the nodes and then divides

by the nodal capacitances. Consequently, the user may multiply the

temperature derivatives by the nodal capacitance to obtain the nodal net q.

RESTRICTIONS:

Do not call this subroutine from VARIABLES I. The long pseudo-compute
sequence is required.

CALLING SEQUENCE: TDi_T(A (DIZ))

_.j'

i--,,

6.5-12



6.6 MATRIX SUBROUTINES

input Format

Unless otherwise noted, the matrices require input as positive numbered

arrays with integer number of rows and columns as the first two data

values followed by floating point element values in row order.

Special Matrix Generation Page

ZER_ Generates a matrix such that every element is zero 6.6-5

_ES Generates a matrix such that every element is one 6.6-5

UNITY Generates a square matrix such that the principal 6.6-5

diagonal elements are unity and the remaining
elements are zero

SIGMA Generates a square matrix such that all elements on 6.6-5

and below the principal diagonal are unity and the

remaining elements are zero

GENALP Generates a matrix such that every element is equal 6.6-5

to a constant

GENC_L Generates a column matrix such that the first element 6.6-5

is equal to Xl and the last element is equal to X2

FULSYM Forms a half symmetric matrix from a full square 6.6-6

matrix

SYMFUL Forms a full square matrix from a half symmetric 6.6-6
matrix

SYMFRC Forces symmetry upon a square matrix 6.6-6

DIAG Forms a full square matrix given a column or row 6.6-6
matrix

UNDIAG Forms a row matrix from the diagonal elements of a 6.6-6

square matrix

DIAGAD Adds the elements of a row matrix to the diagonal 6.6-6

elements ef a square matrix

Elemental Operations

ELEADD Adds corresponding elements of two matrices [A]

and [B] to form a third [Z] (Matrix addition)

6.6-7

ELESUB Subtracts the corresponding elements of two matrices

to form a third [Z] (Matrix subtraction)

6.6-7

ELEMUL Multiplies the corresponding elements of two matrices

[A] and [B] to form a third [Z] (this is NOT

matrix multiplication).

6.6-7

6.6-1



ELEDIV

ELEINV

Divides the corresponding elen_nts of two [A] and

[B] matrices to form a third [Z] (this is NOT

matrix division).

Obtain5 the reciprocal of each element of matrix [A]

and place it in the corresponding location of

another matrix [Z]

Page

6,6-7

6.6-7

©

EFSIN Generates the sine of each elen_nt of matrix [A] and

places it in the corresponding location of

another matrix [Z]

6.6-8

EFASN Generates the arcslne of each element of matrix [A] and 6.6-8

places it in the corresponding location of another

matrix [Z]

EFC_S Generates the cosine of each element of matrix [A] and 6.6-8

places it in the corresponding location of another

matrix [Z]

EFACS Generates the arcosine of each element of matrix [A] 6.6-8

and places it in the corresponding location of

another matrix [Z]

EFTAN Generates the tangent of each element of matrix [A] 6.6-8

and places it in the corresponding location of

another matrix [Z]

EFATN Generates the arctangent of each element of matrix [A] 6.6-8

and places it in the corresponding location of

another matrix [Z]

©

EFABS Generates the absolute value of each matrix [A] 6.6-9
element

EFL_G Generates the natural log of each [A] element 6.6-9

EFSQR Generates the square root of each matrix [A] element 6.6-9

EFEXP Generates the exponential of each matrix [A] element 6.6-9

EFP_)W Generates the power of each matrix [A] element 6.6-9

ADDALP Adds a constant to every element in a matrix 6.6-'10

ALPHAA Multiplies every element in a matrix by a constant 6.6-10

MATRIX Allows a constant to replace a specific matrix element 6.6-10

SCALAR Allows a specific matrix element to be placed into a 6.6-10
constant location

MATADD Adds a constant to a specific matrix element 6.6-I0

©

6.6-2



C)

Matrix Ooerations/Solutions Page

INVRSE Inverts a square matrix 6.6-11

MULT

TRAN'S

Multiplies two conformable matrices

Forms the transpose [Z] from matrix [A]

6.6-II

6.6-12

AABB

BTAB

BABT

DISAS

Sums two scaled matrices

Performs the matrix operation [B]t [A][B]

Performs the matrix operation [B][A][B] t

Allows a user to operate on matrices in a partitioned

manner by disassembling a submatrix [Z] from a

parent matrix [A]

6.6-12

6.6-13

6.6-13

6.6-i3

ASSMBL

C_LMLT
R))WMLT }

Allows a user to operate on matrices in a partitioned

manner by assembling a submatrix [Z] into a parent

matrix [A]

Multiplies each element in a column or row of matrix

[A] by its corresponding element from the diagonal

matrix [V] which is stored as a vector

6.6-13

6.6'14

SHIFT Moves an entire matrix as is from one location to

another
5.6-14

REFLCT Moves an entire matrix with the order of the column

elements reversed from one location to another
6.6-14

SHUFL Allows the user to reorder the size of a matrix as

long as the total nun_er of elements remains

unchanged

6.6-15

C_LMAX
C9LMIN }

Searches an input matrix to obtain the maximum or
minimum values within each column

6.6-15

SYMREM
SYMREP }

Allows the SINDA user to operate on a simple row/

column of a half symmetric matrix
6.6-16

SYMDAD Adds the elements of a vector array to the correspond- 6.6-16

ing elements of the main diagonal of a half

symmetri c matrix

SYM_V Obtains the inverse of a half symmetric matrix 6.6-16

P_MLT Multiplies a given number of nth order polynomial

coefficients by a similar number of mth order

polynomial coeffi cients

6.6-17

6.6-3



page

P_V_

PLYEVL

P_LSBV

Evaluates the polynomial for the input complex 6.6-17

number X + iV, given a set of polynomial coefficients

Evaluates each polynomial for each X value, given a 6.6-17

matrix with nth order polynomial coefficients and
a column matrix of X values

Calculates the complex roots, given a set of polynomial 6.6-18
coefficients as the first row in a matrix

JACIBBI Determines the eigenvalues and eigenvector associated

win an input matrix [A]

Store and Recall

CALL Retrieves matrices on magnetic tape

6.6-18

6.6-19

FILE Stores matrices on magnetic tape _ 6.6-19

ENDM_P Used in conjunction with subroutines CALL and FILE.

Causes all matrices from the logical 16 tape to be

updated onto the logical 14 tape

6.6-20

LSTAPE Will output the name, problem number and size of

every matrix stored on tape on logical 14

Appl ications

Mi)DES Solves a particular matrix dynamic vibration equation

6.6-20

6.6-21

MASS Generates an inertia matrix of a dynamic vibration

system described in terms of deflections and
rotations

6.6-22

STIFF Generates a stiffness matrix for a dynamic vibration

system described in terms of deflections and

rotations

6.6-23

?

"7

©

©

•. .-

.: . .

6.6-4 ,



SPECIAL MATRIX GE,NERATION ......

\

SUBROUTINE NAMES: ZERO or ONES

PURPOSE:

These subroutines generate a matrix [Z] such that every element is zero

or one respectively.

RESTRICTI_S:

The matrix to be generated must contain exactly enough space in addition

to having the integer number of rows and columns as the first two data

values. The A'R and NC arguments are the integer number of rows and
columns respectively.

•CALLING SEQUENCE: ZER_(_/R, NC, z (IC; )

or _ES(_VR, NC, Z(IC) )

SUBROUTINE NAMES: UNITY or SIGMA

PURPOSE:

These are square matrix generation subroutines. UNITY generates a square

matrix such that the main diagonal •elements are one and all cther elements

are zero: SIGMA generates a square matrix such that all elements on and

below the main diagnoal are one and the remaining elements are zero.

RESTRICTIONS:

The matrix [Z] to be generated must contain exactly enough space in

addition to having the integer number of rows and columns as the first

two data values. The integer number of rows and columns are equal and

must be input as the argument N.

CALLING SEQUENCE: UN ITY(N, Z(IC))

or SIGMA(N,Z(IC))

SUBROUTINE NAMES: GENALP or GENC_L

PURPOSE:

These are special matrix generation subroutines. GENALP will generate a

matrix such that everyelement is equal to a constant C. GENC_L will

generate a column matrix such that the first element is equal to XI and

the last element is equal to X2. The intermediate elements receive equally

incremented values such that a linear relationship is established between
row number and element value.

RESTRICTIONS:

The NR and NC arguments refer to the integer number of rows and columns

respectively. X1, X2,and C must be floatin_ point values. The generated
matrices must contain exactly enough space in addition to hav,ing the
integer number of rows and columns as the first two data values.

CALLING SEQUENCE: GENALP (NR,NC, C,ZC_TC))

or GENC¢L(xI,x2_NR, Z (_TC) )

6.6,5



SPECIAL MATRIX FORMULATION

SUBROUTINE NAMES: FULSYM or SYMFUL

These subroutines allow the SINDA user to form a half syn:netric matrix from

a full square matrix or form a full square matrix from a half symmetric

matrix, respectively. The arguments must address the matrix array integer

count set by the preprocessor, the array lengths must be exact.

RESTRICTIONS:

The half synmmtric matrix must be formatted as shown for subroutine IRRADI

(Section 6.8) and the full square matrix must conform to the standard
format.

CALLING SEQUENCE: FULSYM(_4(IC), s_4(ZC) )

or SYMFUL(SM(!C),FM(IC))

Where FM is the full matrix and St4 is the symmetric matrix.

SUBROUT INE NAME: • SYMFRC

PURPOSE:

This subroutine may be used to force symmetryupon a square matrix_ The

main diagonal elements are untouched and all others are treated as follows:

x = (aij + aji)/2.0; aij : x; aji = x

RESTRICTIONS:

The addressed matrix must be square and formatted as described in Section 3.3.3.3.

CALLING SEQUENCE: SYMFRC(A (IC) )

SUBROUTINE NAMES: DIAG or UNDIAG or DIAGAD

PURPOSE :

Given a l*N or N*i matrix [V], subroutine DIAG forms a full square N*N

matrix [Z]. The [v] values are placed sequentially on the main diagonal

of [Z] and all off diagonal elements are set to zero. Subroutine UNDIAG

forms a l*N matrix [V] from the diagonal elements of an N*N matrix [Z].

Subroutine DIAGAD adds the elements of a l*N matrix [V] to the diagonal

elements of an N*N matrix [Z].

RESTRICTIONS:

Both matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

CALLING SEQUENCE: DIAG( v(_c), z(IC))

or UNDIAG(Z(IC),V(IC))

or DIAGAD (V(IC), Z(IC))

6.6-6

0



\

j"

• \
,.-.

ELEMENTAL OPERATIONS

SUBROUTINE NAMES: ELEADD or ELESUB

PURPOSE:

These subroutines add or subtract the corresponding elements of two matrices

respectively,

m*n m'_ m*n

[8] = [A] ± [B] , zij = aij + bij

RESTRICTIONS:

All matrices must be of identical size and have the integer number of rows

and columns as the first two data values. The [8] matrix may be overlayed

into the [A] or [B] matrix.

CALLING SEQUENCE : ELEADD(A(IC) ,B(IC) ,Z(IC) )

or ELESUB(A(IC) ,B(IC) ,Z(IC) )

SUBROUTINE NAMES: ELEMUL or ELEDIV

PURPOSE:

These subroutines multiply or divide the corresponding elements of two

matrices respectively.

m*n m*n m*n

[Z] = [A] *l [B] , aij = aij *I bij

RESTRICTI_S: •

All matrices must be of identical size and have the integer number or rows

and columns as the first two data values. The [z] matrix may be overlayed

into the [A] or [B] matrix.

CALLING SEQUENCE: ELEMUL(A(IC),B(IC),Z(IC))

or ELEDIV(A(IC),B(IC),Z(IC))

SUBROUTINE NAME: ELEINV

PURPOSE:

This subroutine obtains the reciprocal of each element of the [A] matrix

and places it in the corresponding element location of the [Z] matrix.

zij = l.O/aij

RESTRICTIONS:

The matrices must be of identical size and have the integer number or rows

and columns as the first two data values. The [Z] matrix may be overlayed

into the [A] matrix.

CALLING SEQUENCE: ELE INV (A (IC) , Z (IC) )

6.6-7



ELEMENTAL OPERATIOHS

SUBROUTINE N_MES: EFSIN or EFASN

PURPOSE:

These subroutines perform elementary functions en all of the [A] matrix
elements as follows:

Zlj = sin(aij) or zij = arcsine(aij)

RESTRICTIONS:

The matrices must be identical in size and have the integer number of rews

and columns as the first two data values. The [z] matrix may be overlayed

into the [A] matrix.

CALLING SEQUENCE: EFSIN (A(IC) ,Z(IC) )

or £FASN(A(IC) ,z(Ic) )

SUBROUTINE NAMES: EFC_Sor EFAC____%

PURPOSE:

These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

zij = cosine(aij) or alj = arccosine(aij)

RESTRI_IONS:

The matrices must be identical in size and have the integer number of rows

and columns as the-first two data values. The [Z] matrix may be overlayed

into the [A] matrix.

CALLING SEQUENCE: EFCgS(A(IC) , z(Ic) )

or EFACS(A(IOJ,Z(IO))

SUBROUTINE NAMES: EFTAN or EFATN

PURPOSE:

These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

zij = tangent(aij )

RESTRICTIONS:

or zij = arctangent(aij)

The matrices must be of identical size and have the integer number of rows

and columns as the first two data values. The [Z] matrix may be overlayed

into the [z] matrix.

CALLING SEQUENCE: EFTAN (A(IC) ,Z(IC) )

or EFATN(A(IC) ,Z(IC) )

6.6-8

0

0

,..j



_

ELEMENTAL OPERATIONS

SUBROUTINE NAMES: EFABS or EFL_G or EFSOR

PURPOSE:

These subroutines perform elementary functions on all of the [A] matrix

elements as follows respectively:

zij = laijl or zij = loge(aij) or aij =

RESTRICTIONS:

The matrices must be identical in size and have the integer number of

rows and columns as the first two data values. All in the [A] matrix

must be positive for EFLeG or EFSQR.

CALLING SEQUENCE: EFABS (A(T_C),Z (IC) )

EFLI) (A(IC) ,Z(IC) )

EFSQR(A(IC) ,Z(IC) )

SUBROUTINE N_MES: EFEXP or EFP_W

PURPOSE:

These subroutines perform elementary functions on al_ of the [A] matrix
elements as follows:

zij = eaij or zij =aija

RESTRICTIONS:

The matrices must be identical in size and have the integer number of

rows and columns as the first two data values. The [Z] matrix may be

overlayed into the [A] matrix. The exponent _ may be an integer or float-

ing point number. However, if any elements in [A] are negative then

must be an integer.

CALLING SEQUENCE:

or

EFEXP(AfIC) ,z(Ic) )

EFP_W(A(IC) ,% Z (IC) )

6.6-9



ELEMENTAL OPERATIONS

SUBROUTIr'E N%4_ES: ADDALP or ALPH#A

PURPOSE:

To add a constant to or multiply a constant times every element in a
matrix.

zij = O + aij or zij = O*aij

RESTRICT IONS:

The matrices must have exactly enough space and contain the integer
number of rows and columns as the first two data values. O and all elements

must be floating point numbers. The [Z] matrix may be overlayed into the
[A] matrix.

CALLING SEQUENCE: ADDALP (C,A (I¢), Z(IC) )

SUBROUTINE NAMES:

or ALPHAA( C, A (IC) , Z (ZC) )

MATRIX or SCALAR or MATADD

PURPOSE:

The subroutine MATRIX allows a constant to replace a specific matrix element,

subroutine SCALAR allows a specific matrix element to be placed into a

constant location, and subroutine MATAAD adds a constant to a specific

matrix element. The integers I and J designate the row and column position
of the specific element.

zij = C or C = zij or zij = zij + C

RESTRICTIONS:
\

The matrix must have the integer number of rows and columns as the first two
data values. Checks are made to insure that the identified element is
within the matrix boundaries.

CALLING SEQUENCE: MATRIX (C,I,J, Z (IC) )

or SCALAR(Z (I¢), I,J, C)

or MATADO( C,I,J, ZCIC) )

0

©

6.6.-10



MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME :

PURPOSE:

To invert a square matrix.

n*n n*n

given [_] , [Z]

RESTRICTIONS:

INVRSE

n*n 1
- [A]"

The matrices must be square, identical in size and contain the integer

number of rows and columns as the first two data values. The output matrix

[A] may be overlayed into the [n] matrix.

CALL ING SEqUENCE: INVRSE (A(IC), Z(It))

DYNAMIC STORAGE REQUIREMENTS:
/

This subroutine requires n dynamic storage allocations.

SUBROUTINE NAME : MULT

PURPOSE: To multiply two conformable matrices together.

m*n m*o p*n

[Z] = [A_ [B] zij = ai *b' k kj

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values. If [A] and [B]

are square, [Z] may be overlayedinto either of them.

CALLING SEQUENCE: MULT (A(IC),B(IC),Z(IC) )

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires n*m dynamic storage locations.

6.6-11



MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME: TRANS

PURPOSE:

m*n n*m

Given a matrix [A] form its transpose as [5]

RESTRICTIONS:

Both matrices must have exactly enough space arid contain their integer

number of rows and columns as the first two dacca values. The output m,atrix
[8] may be overlayed into the [A] matrix.

CALLING SEQUENCE: TRAN S(A (IC),Z(ZC) )

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires n*m dynamic storagf,, locations.

SUBROUTINE NAME: AABB

PURPOSE:

To sum two scaled matrices:

m*n m*n m*n

Cz] : el[A] + C2[ 3 z.. = Cl*a i + C2*Lb..10 j 13

RESTRICT IONS :

All matrices must be of identical size, contain exactly enough space and
contain the integer number of rows and columns as the first two data

values. The output matrix [5] may be overIayed into either of the input
matrices.

CALLING SEQUENCE: _BB (CI,A (IC),Of, B (IC),%(I(=))

6.6-12



©

MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE Ni_M.ES:

PURPOSE:

BTAB or BABT

To perform the following matrix operations, respectively:

n*m n*m m*m m*m
Cz] -- C8]t CA] C8]

or

m*m m*n n*n n*m
Cz] -- [8] CA] [8]t

REST RICTIONS:

The matrices must be conformable, contain exactly enough space and contain

the integer number of rows and columns as the first two data values. Sub-
routines MULT and TRANS are called on.

CALLING SEQUENCE : BTAB (A (IC) , B(IC), Z (IC) )

or BABT(ACIC),BCIC) ,Z(IC) )

DYNAMIC STORAGE REqUIREME.NTS:

Due to subroutines MULT and TR_NS this subroutine temporarily requires

2*m'n+6 dynamic locations.

SUBROUTINE NAMES: DISAS or ASSMBL

PURPOSE:

These subroutines allow a user to operate on matrices in a partitioned

manner by disassembling a submatrix [%] from a parent matrix [A] or

assembling a submatrix [Z] into a parent matrix [A].

RESTRICTIONS:

The Z and J arguments are integers which identify (by row and column number

respectively) the upper left hand corner position of the submatrix within

the parent matrix. All matrices must have exactly enough space and con-

tain the integer nun_er of rows and columns as the first two data values.

The NR and tJC arguments are the integer number of rows and columns respectively
of the disassembled submatrix. If the submatrix exceeds the bounds of the

parent matrix an appropriate error message is written and the program
termi pated.

CALLING SEQUENCE:

or

DISAS(A(IC) ,I,,7,NR, NC, Z (IC) )

ASSMBL (Z (IO) , I,,l, A (ZC) )

.,

6.6-13



MATRIX OPERATIONS AND SOLUTIONS.

SUBROUTINES NAMES: C_LMLT or R_WMLT

PURPOSE:

To multiply each element in a column or row of matrix [A] by its correspond-

ing element from the matrix Iv] which is conceptually a diagonal matrix but

stored as a vector; i.e., l*N or N*l matrix. The matrix [%] is the product.

RESTRICTIONS:

The matrices must have exactly enough space and contain the integer number

of rows and columns as the first two data values. The matrices being

multiplied must be conformable.

CALLING SEQUENCE: CBLMLT (A(IC) ,V(IC) ,Z(IC) )

or RBWMLT(V(IC),A(IC),_(IC) )

SUBROUTINE NAMES: SHIFT or REFLCT

PURPOSE:

These subroutines may be used to move an entire matrix from one location
to another. SHIFT moves the matrix exactly as is and REFLCT moves it

and reverses the order of the elements within each column. The last

element in each column becomes the first and the first becomes the last, etc.

RESTRICTIONS:

The matrices must be of identical size and the integer number of rows and

columns must be the first two data values. The [%] matrix may be over-

layed into the [A] matrix.

CALLING SEQUENCE:

or

SHIFT (A(Ic) ,z(Ic) )

RE FLCT (A (%0), Z(%C))

DYNAMIC STORAGE REQUIREMENTS:

REFLCT uses three dynamic storage locations plus an additional one for each

row.

©

.

6.6-14



MATRIX OPERATIONS _D SOLUTIONS

SUBROUTINE NAME: SHUFL

PURPOSE:

This'subroutine allows the user to reorder the size of a matrix as long as

the total number of elements remains unchanged. The row order input matrix

[A] is transposed to achieve column order and then reformed as a vector by

sequencing the columns in ascending order. This vector is then reformed

into a column order matrix by taking a column at a time sequentially from

the vector. The newly formed column matrix is then transposed and output

as the row order matrix [Z].

RESTRICTIONS:

The matrices must be identical in size and have their respective integer

number of rows and columns as the first two data values. The number of

rows times columns for [A] must equal the number of rows times columns of [Z].

CALLING SEQUENCE: SHUFL(A(IC),Z(IC))

SUBROUTINE NAMES:

PURPOSE:

C_}LMAX or C_LMIN.

These subroutines search an input matrix to obtain the maximum or minimum

values within each column respectively. These values are output as a single

row matrix [A] having as many columns as the input matrix [A].

RESTRICTIONS:

Each matrix must have its integer number of rows and columns as the first

two data values.

CALL ING SEQUENCE:

or

C_LMAX (A (IC), Z (Ic) )

C_LMIN(Ar, IC),Z(IC) )

',.

6.6-15



MATRIX OPERATIONS #_ND SUBROUTINES

SUBROUTINE NAMES: SYMREM or SYMREP

PURPOSE:

These subroutines allow the SINDA user to operate on a single row/column of

a half symmetric matrix. SYMREM will remove a particular row/column from

the half symmetric matrix and place it into an array of the exact length

to hold it. SYMREP will take an array and replace it into a specific row/
column of the half symmetric matrix.

RESTRICTIONS:

The half symmetric matrix must be formatted as shown for subroutine IRRADI

in Section 6.8. The integer K must designate the row/colum to be operated

on. IfK is an integer zero, the main diagonal will be removed or replaced.

CALL ING SEQUENCE : SYMREM(K, SM(IC),A (IC))

or SYMREP(K, A (IC), SM(IC) )

SUBROUTINE NAME: SYMDAD

PURPOSE:

This subroutine will add the elements of a vector array to the correspond-

ing elements of the main diagonal of a half symmetric matrix. If any of the

elements is less than zero, they are set to zero.

RESTRICT iONS:

The half symetric matrix must be formatted as shown for subroutine IRRADI

in Section 6.8. The vector array must be input as a positive array and be
the same length as the matrix order.

CALLING SEQUENCE:

SUBROUTINE NAME:

SYMDAD(VA(%C),SM(IO))

SYMINV

PURPOSE,:

This subroutine obtains the inverse of a half symmetric matric matrix which

is also symmetric and returns it in the same area as the input matrix. This

subroutine is called internally by subroutines SCRPFA, IRRADI and SLRADI.

RESTRI CT IONS:

This subroutine contains no error checks, exercise extreme caution when

using it.

CALLING SEQUENCE: SYMINV(A(DV),N)

Where A(DV) addresses the I,I element and N is the matrix order.

D

6.6-16



MATRIX OPEE_TIONS _D SOLUTIONS

\.

{
\

j-

SUBROUTINE NAME: POLMLT

PURPOSE:

This subroutine performs the multiplication of a given number of nth order

polynomial coefficients by a similar number of mth order polynomial co-

efficients. The polynomials must be input as matrices with the number of

rows equal and each row receives the following operation:

(ci,c2,c3,...,c k) = (al,a2,...,an) * (bl,b2,...,bm),k=m+n-I

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

CALLING SEQUENCE: P_LMLT (A (ZC),B (ZC),C(ZC) )

SUBROUTINE NAME: POLVAL

PURPOSE:

Given a set of polynomial coefficients as the first row of matrix [A], this

subroutine evaluates the polynomial for the input complex number X+iZ. The
answer is returned as U+iV.

RESTRICTIONS:

[A] may be m*n but only the first row is evaluated.

CALLING SEQUENCE: P_)LVAL(A(IC) ,X, Y,U, V)

SUBROUTINE NAME: PLYEVL

PURPOSE:

Given a matrix [A] containing an arbitrary number, NRA, of the nth order

polynomial coefficients and a column matrix [X] containing an arbitrary

number, NRX, of X values, this subroutine evaluates each polynomial for each

X value. The answers are outpu_ as a matrix IS] of size NRX*NRA. Each set

of polynomial coefficients in [A] is a row in ascending order. An X value

evaluated for the polynomial creates a row in [Z] where the column number

agrees with the polynomial row number.

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

CALLING SEQUENCE: PLYEVL (A (.TC) , X (ZC) , g (._C) )

6.6-17



'%

STORE AND RECALL

MATRIX DATA STORAGE AND RETRIEVAL

The ability to store and retrieve matrices from tape is easily achieved
through the use of the FILE and CALL subroutines. Matrices are identitied

by an alphanumeric name, integer problem number and the core address of or

for the matrix. The CALL subroutine searches the Matrix Input Tape and

brings the desired matrix into core. The FILE subroutine writes a matrix

onto the Matrix Output Tape. Subroutine ENDMi_P causes all matrices from

the Matrix Output Tape to be updated onto the Matrix Input Tape. In case

of duplicate matrices, the one from the Output Tape replaces the one on

Input Tape. A matrix which has been filed cannot be called until an ENDMOP

operation has been performed. To create a new tape the user merely sets

control constant NI_CI_PYnonzero and has a scratch tape mounted for the
Input Tape. The user should check the section on control cards and deck

setup to determine control card requirements (Appendix D).

SUBROUTINE NAMES: CALL or FILE

PURPOSE:

To allow the user to retrieve or store matrices on magnetic tape as de-

scribed above The H argument must be a six-character alphanumeric word

and N must be an integer number, both of which are used to identify the
matrix.

RESTRI CT IONS:

See above. The matrix must have exactly enough space and contain the

integer number of rows and columns as the first two data values.

CALLING SEQUENCE: CALL (H,N,A tIC) )

or FILE(A(IC) ,H,N)

DYNAMIC STORAGE REQUIREMENTS:

Each of these routines requires 256 words of dynamic storage.

,?4

(

6.6-19



STORE AND RECALL

SUBROUTINE NAMES: ENDM_P or LSTAPE

PURPOSE:

Subroutine ENDM_P should be used in conjunction with subroutines CALL and

FILE; see above. It causes matrices which have been filed by FILE on the

Matrix Output Tape to be updated onto the Matrix Input Tape. A call to

subroutine LSTAPE will cause the output of the name, problem number and

size of every matrix stored on the Matrix Input Tape.

RESTRICTIONS:

See above.

CALLING SEQUENCE: ENDMBP

or LSTAPE

DYNAMIC STORAGE REQUIREMENTS:

Each of these routines requires 256 words of dynamic storage.

0

/ ©

6.6-20

©



APPLICATION -- DYNAMIC VIBRATION

SUBROUTINE NAME: MODES

PURPOSE:

This. subroutine solves the following dynamic vibration equation

m*n m*n n*n n*n n*n

[,4] [z] - [B] [z] I__
2

W

where [A] is the input inertia matrix associated with the kinetic energy

and [B] is the input stiffness matrix associated with the strain energy.

[8] is the output eigenvector matrix associated with the frequencies of

vibration W i which are output in radians/sec as [B] and in cycles/sec as

[O], both [R] and [C] are n_n diagonal matrices but stored as vectors.

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values. Subroutine •

JAC_)BI is called on.

CALLING SEQUENCE: MBDES(A(IC),B(IO),Z(IC),R(IC),C(IC))

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires 3*n'n+9 dynamic storage locations. An amount

equal to 2*n'n+6 of these locations is required by subroutine JAC_BI.

6.6-21



APPLICATION -- DYNAMIC VIBRATION

SUBROUTINE NAME: MASS

If a dynamic vibration problem is referred to a set of coordinates con-

sisting of the deflections, _., and the rotations, oi, at N collocation
points along the beam under c_nsi(Jeration, then this subroutine generates

the 2N by 2N inertia matrix [A] which appears in the following expression

for kinetic energy:

©

T = _1" _n_)1""

en

RESTRICTIONS:

The mass and inertia data input to this subroutine are to be supplied as

piecewise continuous slices; however, these arrays may be of arbitrary

size and different in length from each other. The number of collocation

points, N, which determines the ultimate size, 2N by 2N, of the output
inertia matrix, isalso chosen arbitrarily.

CALLING SEQUENCE :

where X

DMPL

.4

MASS (X (Ic) ,ZXV_L (I C),RIPL (IC) ,CMC IC) ,A (IC) )

is the matrix (N X l) of collocation points referred to an

arbitrary origin•
is the matrix (NDM X 4) of distributed mass per unit length

slices, where

Col l is the location of the rear of a slice.

Col 2 is the location of the front of a slice.

Col 3 is the mass value at the rear of the slice•

Col 4 is the mass value at the front of the slice•

is the matrix (NRI X 4) of distributed rotary inertia per unit

length slices. The columns here are similar to DMPL.
is the matrix (NCM X 4) of concentrated mass items, where

Col l is the attach point location for each item.
Col 2 is the mass at this location•

Col 3 is the location of its center of gravity.
Col 4 is the moment of inertia about the C. or G.

is the output (2N X 2N) inertia matrix•

NOTE: Having application to DMPL, BI"PL and C74, it is noted that the location

of the values may not go beyond the limits of the collocation points in
either direction. 0

6.6-22



APPLICATIC_ -- DYNAMIC VIBRATION

SUBROUTINE NAME : STIFF

If a dynamic vibration problem is referred to a set of coordinates con-

sisting of the deflections, {_, and the rotations, e , at N collocation

points along the beam under c_nsideration, then thisisubroutine generates

the 2N by 2N stiffness matrix [KI which appears in the following expression

for the strain energy:

}_1""CnO1••'en [K]

i

Bn

RESTRICTIONS:

The stiffness and shear data inPut to this subroutine are to be supplied

as piecewise continuous slices; however, these arrays may be of arbitrary

size and different in length from each other. The number of collocation

points, N, which determine the ultimate size, 2N by 2N, of the output

stiffness matrix, is also chosen arbitrarily.

CALLING SEQUENCE: ST IFF (X (IC).E_T(It), GA (IC) ,X (IC) )

where X is the matrix (N X l) of collocation points referred to an

arbitrary origin•

EI is the matrix (NEI X 4) of bending stiffness slices, where
Col l is the location of the rear of a slice.

Col 2 is the location of the front of a slice.

Col 3 is the stiffness value at the rear of a slice.

Col 4 is the stiffness value at the front of a slice.

GA is the matrix (NGA X 4) of shear stiffness slices, where
the columns here are similar to those for the EI distribution.

K is the output stiffness matrix size 2N by 2N.

NOTE: Having application to EI and GA, it is noted that the location of the

v--a]uesmay not go beyond the limits of the collocation points in either
direction.

6.6-23

i



C _,

6.7 OUTPUT SUBROUTINES

Data Input and Temperature Printout

GPRINT
QFPRNT 1

TPRIBT

CPR!NT

QIPRNT

QNPRNT

Causes the printout of all conductor values or heat

flow rates through conductors

Causes the printout of all nodal temperatures, all

capacitance values, all impressed heating rates
or all net heat rates for the nodal network under

consideration

Numerical Differencing Characteristics Printout

STNDRD Causes a line of output to be printed giving present

time, last time step used, most recent CSGMIN,

maximum diffusion change calculated over the last

time step and maximum relaxation calculated over
the last iteration

PRNTMP Calls on STNDRD and also lists temperature of every

node in the network according to relative node
number

Float.in9 Point

PRINT
PRINTL 1

Allows individual floating point numbers to be

printed for reference temperature, caDacitance,
etc.

Array Printout

PRINTA

PRNTMA

PRNTMI

PUNCHA

Allows the user to printout an array of values five
to the line

Allows the user to print up to I0 arrays in a
column format

Enablesa user to punch out an array of data values

in any desired format

Plot Packaqe

PRNPLT

PL_TXI

PLgTX2

PL9TLI

PLgTL2

PLgTX3

PLgTX4

SC-4060

SC-4020

Prints out a plot on the line printer

Call upon a large package of undocumented

subroutines specifically for the SC-4060

Plot Symbol Dictionary

Plot Symbol Dictionary

Page

6.7-4

6.7-4

6.7-4

6.7-5

6.7-5

6.7-5

6.7-7

6.7-8

6.7-9

/f _-

6.7-1



t

DATA INPUT AND TEMPERATURE PRINTOb'F

SUBROUTINE NAMES: GPRINT or QFPRNT

PURPOSE:

These subroutines cause the printout of all conductor values or heat flow

rates through conductors. All values are printed out versus the actual

conductor numbers on which they occur.

RESTRICT ION S:

These subroutines require no arguments and are generally called from the

EXECUTION or OUTPUT CALLS block; do not call them from VARIABLES I. Non-

linear conductors are evaluated prior to calculation and/or printing of

requested values.

CALLING SEQUENCE: GPRINT or QFPRNT

DYNAMIC STORAGE REQUIREMENTS:

Both routines require one dynamic storage location for each conductor due
to a call to subroutine NNREAD. These locations are used to store the

actual conductor numbers and are permanently captured by the routines

(i.e., they are not released upon completion). In addition, subroutine

QFPRNT requires one additional location for each conductor, which will be

used on a dynamic basis.

SUBROUTINE NAMES: TPRINT or CPRINT or QIPRNT or QNPRNT

PURPOSE:

These subroutines cause the printout of all nodal temperatures, all capaci-

tance values, all impressed heating rates or all net heating rates for the

nodal network under consideration. All values are printed out versus the

actual node numbers on which they occur. It should be noted that TPRINT
calls on STNDRD.

RESTRICTIONS:

These subroutines require no arguments and are generally called from the
EXECUTION or OUTPUT CALLS block; do not call them from VARIABLES I. Non-

linear network elements are evaluated prior to calculation and/or printing

of requested values.

CALLING SEQUENCE: TPRINT or CPRINT or QIPRNT or QNPRNT

DYNAMIC STORAGE REQUIREMENTS:

Each subroutine requires one dynamic storage location for each node in the
network. These locations hold the actual node numbers and are not released

upon completion of the routines. The locations are required by subroutine
NNREAD.

6.7-3



NUMERICAl. DIFFERENCING CHARACTERISTICS FLOATING POINT PRINTOUT

SUBROUTINE NAMES: STNDRD or PRNTMP

PURPOSE:

Subroutine STNDRD causes a line of output to be printed giving the present
time, the last time step used, the most recent CSGMIN value, the maximum

diffusion temperature change calculated over the last time step and the

maximum relaxation change calculated over the last iteration. ANN refers

to the actual node number on which something occurred. The line of output
looks as follows:

TII4E DTIMEU CSGMIN (ANN) TEMPCC (#_VN)_ RELXCC(ANN)_

Subroutine PRNTMP internally calls on STNDRD and also lists the temperature

of every node in the network according to relative node number. The relative

node number - actual node number dictionary printed out with the input data

should be consulted to determine temperature locations on the thermal network
model.

RESTRICTIONS:

No arguments are required or allowed. These subroutines should be used with

network problems only.

CALLING SEQUENCE: STNDRD or PRNTMP

DYNAMIC STOP,AGE REQUIREMENTS:

These subroutines require one location for each node for the actual node

numbers. These locations are accessed by subroutine NNREAD and are not

released upon completion. They remain available to other routines which

require actual node numbers.

SUBROUTINE NAMES : PRINT or PRINTL

PURPOSE:

These subroutines allow individual floating point numbers to be printed.

The arguments may reference temperature, capacitance, source locations,

conductors, constants or unique array locations. In addition, subroutine

PRINTL allows each value to be preceded or labeled by a six-character

alphanumeric word. The number of arguments is variable but the "label"

array (ZA) used for PRINTL should contain a Hollerith label for each

argument.

RESTRICTIONS:

These subroutines do not call on STNDRD. The user may call on it if he

desires time control information. Any control constant may be addressed

in order to see what its value is; integers must first be floated.

CALLING SEQUENCE: PRINT(T, C,q, G,K,.. .,A+)

or PRINTL (I,A(DV),%'jC,Q,G,K, ...,A+ )

6.7-4
i

©



K/

ARRAY PRINTOUT

SUBROUTINE NAME: PRINTA

PURPOSE:

This subroutine allows the user to print out an array of values, five to

the line. The integer array length _ and the first data value location

must be specified. Each value receives an indexed label. Tile user must

supply a six-character alphanumeric word L to be used as a common label

and an integer value M to begin the index count.

RESTRICTIONS:

The array values to be printed must be floating point numbers. If L is

supplied as a literal Hollerith data value (instead of a reference to a

user constant containing same), it must be entered in FORTRAN-compatible

H-type notation (e.g., 4HTEMP).

CALLING SEQUENCE: PRINTA(L,A (DV) ,N,M)

If the label was the word 'TEMP', iV was 3 and M was 6, the line of output
would look as follows:

TEMP ( 6)value TEMP ( 7)value TEMP ( 8)value

SUBROUTINE NAME: PRNTMA or PRNTMI

PURPOSE:

This subroutine allows the user to print out up to lO arrays in a column
format. The individual elements are not labeled but each column receives

a two-line heading of 12 alphanumeric characters/line. The two-line head-
ing must be supplied as a single array of four words, six characters each.

The user must supply the starting location of each label array and value

array. The number of values in each value array must agree and be supplied

as the integer N. The value arrays must contain floating point numbers.*

RESTRICTIONS:

Labels must be alphanumeric while values must be floating point,* All

floating point value arrays must contain the same number of values.

CALLING SEQUENCE: PRNTMA( N, LAI (DV),VAI (DV),LA2 (DV) ,VA2 (DV),...)

PRNTMI (N,LAI (Dr), VAt (DV),LA2 (DV) ,VA2 (DV),...)

*VAt only must address an array of integers for subroutine PRNTMI.

6.7-5 "



ARRAY PRINTOUT

SUBROUTINE NAME: PUNCHA

PURPOSE:

This subroutine enables a user to punch out an array of data values in

any desired format. The F argument must reference a FBRTRAN FORMAT which

has been input as an array, including the outer parenthesis but deleting

the word FBRMAT.* The second argument must address the first data value

of the array of sequential values. The third argument, N, must be the

integer number of data values in the array.

CALLING SEQUENCE: PUNCHA(F(DV) ,A (DV) ,N)

*For example, if P(DV) were A5+l, A5 could be input as follows:

I

8 2

s $
BCD 4(12X,5(Fg.3,1H,),Fg.3)

END $

6.7-6
i



PLOT PACKAGE

SUBROUTINE NAME: PRNPLT

PURPOSE:

lhis subroutine will print out a plot of data on the line printer. It is

intended primarily for plotting temperature histories which were accumu-

lated in the OUTPUT CALLS block. One or two curves of up to lO0 points

each may be plotted on each frame(page. Y-axis scaling is automatic. No

units are associated with the X-axis, and no X values are used; one point

is plotted for each print wheel position along the X-axis. Points on the

first curve will be printed as 'X's, and points on the second curve will

be printed as 'O's. Where points overlap, an asterisk, '*', is printed.

RESTRICTIONS :

If NA and/or NB is greater than I00, only the first I00 points in the

corresponding array of Y-values (YA and/or YB) will be plotted. The argu-

ment LP normally has a value of 50 when standard II x 14 computer paper
is used. The smallest Y increment represented by a line is one unit, so

the narrowest range covered by the Y axis will be LP units. One graph only

may be plotted on a single page. When a point to be plotted has a value

which lies exactly between the values associated with two adjacent lines,

then the point will be printed on both lines.

CALLING SEQUENCE: PRNPLT(TT(DV) ,NA, YA(DV) ,TA(DV) ,NB, YB(DV) ,TB(DV) ,LP )

where: TT = Main •title (4 Hollerith words)

NA = Number of points for the first curve

•(integer; must be greater than zero)

YA = Y values for the first curve

TA = Title for the first ou_-ve (4 Hollerith words)

NB = N_nber of points for the second curue
(may be zero)

YB = Y values for the second cu_e

TB = Title for the second curve (4 Hollerith words)

LP = Number of printer l_nes whioh may be used to plot values

(at least two less than the number of lines on a page)

/c-

6.7-7



PLOT PACKAGE

SUBROUTINE NAMES: PLBTXI or PLBTX2 or PLBTLI or PLBTL2

PURPOSE:

These FgRTRAN V coded quick plot subroutines Call upon a large package of

undocumented subroutines specifically for the SC-4060. They will produce

up to four graphs per frame and several variables may be plotted per graph.

A suitable grid will be drawn with certain lines emphasized. The grid
lines will have reasonable numerical indicia and centered title will be

printed for both axes and at the top of the graph.

PL@TXI and PLBTLI will compute the minimum and maximum values of the stored

X and Y arrays to be plotted and call upon PLgTX2 or PLBTL2 which use the

values as grid limits for the graph. The user may set the grid limits by

calling PLOTX2 and PLOTL2 directly. The X, Y and top titles (XT, YT and TT
respectively) must consist of nine alphanumeric words of six characters each.

RESTRICTIONS:

The user should consult Appendix D to check tape designation requirements.
The X and Y values must be floating point numbers. The user must call sub-

routine PLTND after all his plotting is done. No limit may be zero for log
plots.

CALLING SEQUENCE:

or

or

PL_TXI (NjIS, TX(DV) ,TY(DV) ,TT(DV) ,NP, AX(DV) ,AY.(DV))

PLIBTX2(N,XL, XR, YB,YT, IX, TX(DV) ,TY(DV) ,TT(DV) ,NP,AX(DV) ,AY(DV) )

PL_}TL1(N,IS, TX(DV) ,TY (DV),TT (DV),NP,AX (DV),AY (DV),LM)
T

PL_TL2 (N,XL, XR, YB, YT, IS, TX(DV) ,TY(DV) ,TT (DV),NP, AX (DV),AY(DV) ,LM)

where: N is the integer number of graphs per fr_ne (1,2,3 or 4)i

if zero, the grid from the previous plot cal I is used.

IS is the integer identifying the plotting symbol (I-144)

TX is the address of the X title

TY is the address of the Y title

TT is the address of the top title

NP is the integer number of XY values or points to be plotted;

if negative the points will be connected by straight lines.

AX is the address of the X array

AY is the address of the Y array

XL is the floating point X axis left limit

XR is the floating point X axis right limit

YB is the floating point Y axis bottom limit

i"2 is the floating point Y asis top limit

LM is an integer identifying the log plotting mode;

if less than zero plot log X versus linear .IT,

if equal to zero plot log X versus log Y,

if greater than zero plot linear X versus log Y

,! _-

_C..yJ

6.7-8



PLOT PACKAGE

SUBROUTINE NAMES: PLOTX3 or PL_TX4

PURPOSE:

These subroutines are similar to PL_TXI and PL_TX2 but have six additional

arguments which allow the user to modify the grid as desired.

RESTRI CTI ONS:

See PL_TXI and PLBTX2.

CALLING SEQUENCE:

or

PL_TX3(N, IS, TX(DV) ,TY(DV) ,TT(DV) ,NP, AS(DV) ,AY(DV) ,DX, DY, L,M,I,J)

PL@TX4 (N, XL, XR, YB, YT, IS, TX (DV),TY (DV), TT (DV),NO, AX (DV), AY (DV),DX,

DY, LM, I,J)

where the arguments are identical to PLOTXI and PLOTX2 except for

DX, DY

L,M

I,J

these floating point values are used in spacing the grid
lines which are centered on the zero values. If zero, no

grid lines will be drawn
these integers cause every Lth vertical and M th horizontal

grid line to be redrawn for emphasis. If zero, no grid

lines will be emphasized. If negative, a square grid will

be produced. It h jththese integers cause every vertical and horizontal

grid line to be labeled with its value. If zero, no grid

lines will be labeled. If negative, the labels will be

placed outside the grid, otherwise they will appear on the

zero axis.

6.7-9



PLOT PACKAGE

Integer

I

2

3

4

5

6

7

8

g

I0

11

12

13

14

IS

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Symbol

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

SC-4060 PLOT SYMBOL DICTIONARY

(for use with quick plot subroutines only)

Integer Symbol . Integer Symbol Int.eger Symbol

31 4 6l m I05 I

32 S 62 n I06

33 6 63 o I07 o

34 7 64 p I08 <

35 8 65 q I09 #

36 g 66 r llO (logical inverse)

37 (blank) 67 s Ill I

38 . 68 t 112

39 , 69 u ll3

40 '(close quote) 70 v ll4 D

41 $ 71 w 115

42 ( 72 x I16 (tilde)

43 ) 73 y 117 (lozenge)

44 / 74 z 118 A

45 -(minus) 88 " 121 ÷.

46 + 89 ¢ 122

47 * 90 [ 123 o(circle)

48 = 91 ] 124 •

49 a 92 ? 125 .

50 b 93 -(hyphen) 126 •

51 c 94 ! 127 •

52 d 95 ; 136 '(open quote)

53 e 96 : 138 {

54 f 97 _ 139 }

55 g 98 S 140

56 h 99 "(caret) 141 -(bar)

57 i 100 6 142 ±

58 j 102 % 143 @

5g k 103 y 144 &

60 1 104 >

6.7-10

©

©



PLOT PACKAGE :

Decimal

Integer

0

I

2

3

4

5

6

7

8

9

I0

11

12

13

14

15

SC-4020 PLOT SYMBOL DICTIORARY

(to be used at installations, such as

NASA/MSC, where an SC-4060 is used

to simulate an SC-4020)

Plot Decimal Plot

Char. Inte)er Char.

0 16 +

1 17 A

2 18 B

3 19 C

4 20 D

5 21 E

6 22 F

7 23 .G

8 24 H

9 25 I

26

= 27 .

n 281 )

' 29 B

6 30 I

a 31 ?

Decimal Plot Decimal Plot

Integer Char. Integer Char.

32 - 48

33 J 49 /

34 K 50 S

35 L 51 T

36 M 52 U

37 N 53 • V

38 9 54 W

39 P 55 X

40 Q 56 Y

41 R 57 Z

42 • 58 °

43 $ 5g ,

44 * 60 (

45 y 61 ;

46 " 62 z

47 d 63 '0

6.7=11



TAPE iNPUT/OUTPUT

SUBROUTINE NAMES: READ or WRITE

PURPOSE:

These subroutines enable the user to read and write arrays of data as binary

information on magnetic tape. The first argument L must be the integer

nun_)er of the logical tape being addressed. The second argument x must

address the first data value of the array to be written out or starting

location for data to be read into. The third argument IV must be an integer

For WRITE. it is the number of data values to be written on tape as a record.

For READ, it is the number of data values to be read in from tape from the

next record, not necessarily the entire record.

RESTRICTIONS:

The user should check Appendix D to determine which logical tapes are avail-

able and control card requirements. All processed information must be in

binary.

CALLING SEQUENCE: READ(L,X(DV),N)

or WRITE (L,X(DV) ,N)

SUBROUTINE NAME: E_F or REWIND

PURPOSE:

These subroutines enable the user to write end of file marks on magnetic

tape and to rewind them. They are generally used in conjunction with

subroutines READ and WRITE discussed above. The single argument L must be

the integer logical tape nun_)er of the unit being activated.

RESTRICTIONS:

The user should check Appendix D to determine available .logical tapes.

CALLING SEQUENCE:

or REWIND(C)

L_-;

6.7-12



/

C

MATRIX PRINTOUT

SUBROUTINE NAME : LIST

PURPOSE:

This. subroutine prints the elements of a matrix [A] and identifies each by

its row and column number. The user must supply an alphanumeric name ALP

and integer number NUM to identify the matrix. This is to maintain con-

sistency with subroutines FILE and CALL.

RESTRICT IONS:

The matrix must have its integer number of rows and columns as the first two
data values.

CALLING SEQUENCE: LIST (A(IC),ALP, NUM)

SUBROUTINE NAME: PUNCH

PURPOSE:

This subroutine punches out a matrix [A], size n'm, one column at a time

in any desired format. The argument F_R must reference a F_RTRAN format

statement that has been input as a positive array. It must include the

outer parenthesis but not the word FBRMAT. The argument HEAD must be a

single BCD word used to identify the matrix. Each column is designated
and restarts use of the FORMAT statement.

RESTRICTIONS:

The matrix [A] must have exactly enough space and centain the integer
number of rows and columns as the first two data values.

CALLING SEQUENCE: PUN CH (A(IC),HEAD, F_R (IC) )

DYNAMIC STORAGE REQUIREMENTS:

This subroutine required n+3 dynamic storage locations.

SUBROUTINE NAME: SYMLST

PURPOSE:

To print out and identify the element values of a half symmetric matrix.

This output subroutine is most generally used with subroutine SCRPFA.

CALLING SEQUENCE: SYMLST (A (DV) ,N )

where A(DV) adresses the l,l element and N is the matrix order.

:f

6.7-13



SPECIAL

SUBROUTINE: PNTABL

PURPOSE:

To Rrovide output information for users of subroutine ABLATS. The ABLATS

routine performs ablative simulation calculations but since it is called

in VARIABLES 2, it performs no output. The user must call PNTABL in the
OUTPUT CALLS block and reference the ablative array of the ABLATS call.

When the ablative material is expended, ABLATS will call PNTABL directly

and will also cause current problem time to be printed.

RESTRICTIONS:

This routine is called in conjunction with subroutine ABLATS only, see

Section 6.8.

CALLING SEQUENCE : PNTABL(AA (IC) )

6.7-14

i



!

6.8 APPLICATION SUBROUTINES

Fluid Flow

PRESS

SPRESS

EFFG

QMETER

RDTNQS

QMTRI

QFORCE

QINTEG

QINTGI
BIVLV

Impresses nodal pressures in one-dimensional flow

paths once the entry pressure, path conductance
and flow rate are known

Calculates the effective conductance between two

points for a specific type of pressure network

Used for calculating flow rates

Performs simple integration useful in conjunction

with QMETER, RDTNQS, QMTRI, and QFORCE

Allows the user to specify the percentage flow

rates through two parallel tubes with common

end points

PhaseChange

ABLATS

LQSLTR

LQDVAP

Represents a simple ablation (sublimation) capacility

Accounts for the phase change energy of a melting

or solidifying material

Allows the user to simulate the addition of liquid
to a node

Therma ! Radiation Exchange

iRRADI

IRRADE

SLRADI

SLRADE

EFFEMS

$CRPFA

Simulates a radiosity network within a multiple

grey surface enclosure containing a non-absorbing
media

Similar to IRRADI and IRRADE but designed to solve

for the solar heating rates within an enclosure

Calculates the effective emissivity between parallel

flat plates

Obtains the script FA value for radiant transfer
within an enclosure

Page

6.8-2

6.8-2

6.8-3

6.8-4

6.8-8

6.8-9

6.8-I0

6.8-I0

6.8-11

6.8-I



FLUID FLOW

SUBROUTINE NAMES: PRESS or SPRESS

PURPOSE:

These routines are useful for impressing nodal pressures in one dimensional

flow paths once the entry pressure PI, path conductance G and flow rate W

are known. The respective equations are:

P2 = n-W/G

or P1(i + l) :PI(i)-w/G(i), i : 1,2,3,...,N

RESTRICTIONS:

For SPRESS, the pressures and conductors must be sequential and in ascending

order, the number of pressure points to be calculated must be supplied as
the integer N.

CALLING SEQUENCE: PRESS(PI,W,G,p_)

SPRESS (N,P1 CDV),W,G(DV) )

SUBROUTINE NAME : EFFG

PURPOSE:

For a pressure network of the following type:

P3

• G_ _ ....... .I
P4

where the values of the identified elements are known, this subroutine will

calcul te the effective conductance GE from P1 to P_. Any interconnections

may occur in the space but only P2, P_ and P4 may be on the boundary and no
elements may cross it. The equation utilized is:

GE : (GI* (P1-P3) + G2*(P1 P4) )I (P1 P2) )

RESTRICTIONS-:

See above. May not be used where capacitors appear on the internal nodes.

CALLING SEQUENCE : EFFG(PI,P2,P3,P4,GI,G_,GE)

6.8-2



r%
)

FLUID FLOW

SUBROUTINE NAMES:

PURPOSE:

OMETER or RDTNqS or QMTRI or qFORCE

These subroutines are generally used for calculating flow rates.

respective operations are:

A =
or A = B*((O+460.)_-(D+460.) 4)

or Ai = Bi*(ci-ci+l) , i = I,N

or Ai = Bi*(Ci-Oi) , i = I,_

Their

RESTRICTIONS:

All values must be floating point numbers except the array length
must be an integer.

which

CALLING SEQUENCE: QMETE R(C,O,B,A)

or RDTNQS(D,C,B,A)

or QMTRI(W, C(DV_B(DV),A(DV) )

or QF_RCE(N, C(DV) ,D(DV) ,B(DV) ,A(DV) )

SUBROUTINE NAMES: qlNTEG or qlNTGI

PURPOSE:

These subroutines perform a simple integration. They are useful for ob-

taining the integrals of flow rates calculated by QMETER, RDTNQS, QMTRI or

QF_RCE. Their respective operations are:

S = S+Q*P/

or Si = Si+Qi*DT , i = I,N

RESTRICTIONS:

All values must be floating point nun_ers except which must be an integer.

Control constant DTIMEU should be used for the step size when doing an

integration with respect to time. The subroutines should be called in
VARIABLES 2.

CALLING SEQUENCE: QINTEG(Q, Z72,S)

or QINTGI (IV,Q(DV) ,DT, S(OV) )

\.

6.8-3



FLUID FLOW

SUBROUTINE NAME: BIVLV

PURPOSE:

This. subroutine allows the user to specify the percentage flow rates through

two parallel tubes with common end points. One tube must consist of a

single flow conductor (GI) while the other tube may consist of one of more

sequential flow conductors (G2(1), I = I pV). The ratio of flow through GI

dividedby the total flow may be calculated in any desired manner and must

be supplied as the argument W. The conductor values of either one tube or
the other are reduced in order to achieve the desired percentage flow rates

regardless of the pressure drop.

RESTRICTIONS:

N must be an integer. G2 must address the first of the sequential con-
ductors in that tube.

CALLING SEQUENCE: BIVLV(N,W, G1,G,_(DV) )

©

©

6.8-4



/

PHASE CHANGE
l

SUBROUTINE NAME : ABLATS

PURPOSE:

To provide a simple ablation (sublimation) capability for the SiNDA user.

The user constructs the 3-D network without considering the ablative.

Then in VARIABLES 2 he simulates l-D ablative attachments by calling ABLATS.

ABLATS constructs the l-D network and solves it by implicit forward-back-

ward differencing (Crank-Nicholson method) using the time step set by the

execution subroutine. Separate ablation arrays (AA) must be used for each

ABLATS call. Required working space is obtained from unused program common.

Several ABLATS calls thereby share unused common. The user must call

subroutine PNTABL (AA) in the OUTPUT CALLS to obtain ablation totals and

•temperaturedistribution.

RESTRICTIONS:

ABLATS must be called in VARIABLES 2 and may be used with any execution
subroutine. Subroutines DIDEGI, NEWTR4 and INTRFC are called. All units

must be consistent. The Fahrenheit system is required. Temperature

varying material property arrays must not exceed 60 doublets. Bivariate

material properties may be simulated by calling BVSPSA prior to ABLATS.

Cross-sectional area is always considered unity. The_lal conductivity,
Stefan-Boltzmann constant and density units must agree in ares and
length units.

CALLING SEQUENCE: ABLATS (AA (IC),R, CP, G,T, C)

where

,CA(IC )

C is the capacitance location of the 3-D node attached to.

T is the temperature location of the _-D node attached to.

G is the location of the material thermal conductivity or the

starting location (integer count) of a doublet G us T arr_ d.

is the location of the materiaZ specific heat or the starting

Zooation (integer count} of a doublet Cp vs T array.
R is the location of the material density or the starting location

(integer count) of a doublet R vs T array.

is the starti_ location of the ablation array which must be

forn_xtted as follows:

6.8-5



AA (IC)+! _,_

NOTE:
1

the _blative line number, a user speoified idsT_tifioation

integer.

2 integer number of 3ublayers (NSL) desired, ABr_ATS subtracts

from this the nun_er of sub_ayers ablated.

$ the initial temperature of the material, ABLATS rep_aoes this

with the outer aurfaoe temperature, always in degrees F.

4 the impressed outer surfaoe heating rate per unit area,
_diation rates not inoluded.

6 material thickness; _his is replaced by the sublayer thiokness.

6 surface area of the 3-D node attached Co, need not be unity.

? abZation tempera_'u.re, degrees F.

8 heat of _lation.

9 Stefan-Boltzm_nn constant in oonsistent units.

• I0 _rfa_e e_i#sivity

11 spaoe "sink" temperature, degrees F.

12 SPACE,N,END where N equals NSL + 4.

The outer surface radiation loss is integrated over the time step.

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires 3* (NSL+I) dynamic storage core locations.

C

6.8-6
• _.-8. C_



PHASE CHANGE

SUBROUTINE NAME: LqSLTR

,/

PURPOSE:

This subroutine accounts for the phase change energy of a melting or

solidifying material. The temperature limits for the reaction must be

specified (over at least a l degree range) and the phase change energy

supplied as a constant rate over the range (Btu/°F). The network is

constructed to include the capacitance effects of the phase change
material. The network solution subroutines are allowed to calculate

incorrect answers based on capacitance effects only; a call to LQSLTR in

VARIABLES 2 then performs a corrector operation to account for any phase

change occurring (reversability allowed) and returns corrected temper-

atures. The user is required to store the old temperature of the material

(in VARIABLES l) and supply it as an argument to LQSLTR. This subroutine

has a "D_" loop built in and can be applied to several sequential nodes

at once.

RESTRICTIONS:

Thenumber of sequential nodes that this subroutine is to be applied to

must be supplied as the integer N. All other arguments must be or
address data values.

CALLING SEQUENCE:

where N

TL

TH

S(DV)

O(DV)

_(DV)
TN(DV)

LQSLTR (N,TL, TH, SCDV) ,C(DV) ,T¢ (DV),T_CDV) )

is the integer number of nodes to be operated on

is the low temperature of the range

is the high temperature of the range

is t'r_ first value of the phase change ener_j rate

is the first value of the nodal capacitances

is the first value of the old temperatures
is the first value of the new temperatures

{,

6.8-7



PHASE CHANGE

SUBROUTINE NAME: LqDVAP

I_ _'c

PURPOSE:

This subroutine allows the user to simulate the addition of liquid to a

node. The network data is prepared as though no liquid exists at the

node and is solved that way by the network execution subroutine. Then

LQDVAP, which must be called in VARIABLES 2, corrects the nodal solution

in order to account for the liquid. If the nodal temperature exceeds the

boiling point of the liquid, it is set to the boiling point.

The excess energy above that required to reach the boiling point is cal-

culated and considered as absorbed through vaporization. If the liquid

is completely vaporized the subroutine deletes its operations. The method

of solution holds very well for explicit solutions, but may introduce

some error when large time steps are used with implicit solutions.

RESTRICTIONS:

This subroutine must be called in VARIABLES 2.

CALLING SEQUENCE: LQDVAP (T,C,A(IC) )

where T
C
A

is the temperature location of the nod_.

is the capacitance location of the node.

+ 1 contains the initial liquid weight.

8 contains the liquid specific heat.

$ contains the liquid vaporization temperature.

4 contains the liquid heat of varporization.

8 receive8 the liquid vaporization rate (weight�time)

6 receives the liquid vaporization total (total weight)

? _ontains the liquid initial temperature.

\.

6.8-8



.

THERMAL RADIATION EXCHANGE

SUBROUTINE NAMES: IRRADI or IRRADE

PURPOSE:

These subroutines simulate a radiosity network* within a multiple gray

diffuse surface enclosure containing a non-absorbing media. The input is

identical for both subroutines. However, IRRADE utilizes explicit equations

to obtain the solution by relaxation and IRRADI initially performs a

symmetric matrix algebra inverse and thereafter obtains the exact solution

implicitly by matrix multiplication. The relaxation criteria of IRRADE

is internally calculated and severe enough so that both routines generally

yield identical results. However, IRRADE should be used when temperature

varying emissivities are to be considered and IRRADI should be used when
the surface emissivities are constant. Both subroutines solve for the J

node radiosity, obtain the net radiant heat flow rates to each surface and

return them sequentially in the last array that was initially used to

input the surface temperatures. The user need not specify any radiation
conductors within the enclosure.

RESTRICT IONS:

The Fahrenheit system is required. The arbitrary number of temperature

arguments may be constructed by a preceding BLDARY call. The emissivity,

area, temperature-Q and upper half FA arrays must be in corresponding order

and of exact length. The first data value of the FA array must be the

integer number of surfaces and the second the Stefan-Boltzmann constant

in the proper units and then the PA floating point values in row order.

The diagonal elements (even if zero) must be included, As many radiosity

subroutine calls as desired may be used. However, each call must have

unique array arguments. The user should follow the radiosity routine by

SCALE, BRKARY or BKARAD to distribute the Q's to the proper source location.

CALL ING SEQUENCE: IRRAD I(AA (IC) ,A _"(IC) ,AFA (IC) ,ATQ (IC) )

or IRRADE (AA (IC),A_(IC),APA (IC),ATQ (IC))

where the arrays are formatted as follows:

A.A(IC),A1,A2, A3, A4,. .,AN, END

A¢ (IC),el, _2, ¢3, E4, ...,cNEND

AFA(IC) ,N,a,FA(I,I) ,FA(I,2),FA(1,3) ,FA(I,4) ,FA(I,5) ,. .,FA(I,N)

FA(2,2) ,FA(2,3) ,FA(2, 4) ,FA(2, 5) ,..,FA( 2,N)

. . • • .FA(N- ,N-2) FA(N-2,N-1),FA(N-2,N)

FA (N-1,N-1) ,FA (N-l, N)

FA(N,N) , END
ATQ (IC) , 21, T2, T3,. . , TN, END

where FA(1,2) is defined as A(1)*P(1,2). After the subroutine is performed
• the ATQ array is ATQ(IC),QI,Q2,Q3,..,QN, END.

Since FAI(I,2)'_FA2 (2,1) only the upper half triangle of the full FA matrix

is required. IRRADI inverts this half matrix in its own area, hence

approximately 300 surfaces may be considered using SINDA on a 65K core
machine.

T*"Radiation Analysis by the Network Method," A. K. Oppenheim, Transaction

of the ASME, May 1956, pp. 725-735.

6.8-9



THERMAL RADIATION EXCHANGE

SUBROUTINE NAMES : SLRADI or SLRADE

PURPOSE:

These subroutines are very similar to IRRADI and IRRADE but are designed to

solve for the solar heating rates within a enclosure. SLRADI inverts a half

symmetric matrix in order to obtain implicit solutions, while SLRADE obtains

solutions explicity by relaxation. SLRADE should be used when temperature

varying solar absorptivities are to be considered. The second data value of

the AFA array must be the solar constant in the proper units. The AT array

allows the user to input the angle (degrees) between the surface normal and

the surface-sun line. The AI array allows the user to input an illumination
factor for each surface which is the ratio from zero to one of the unshaded

portion of the surface. The solar constant (S), AT and A/ values may vary

during the transient for both routines. No input surface temperatures are

required. The absorbed heating rates are returned sequentially in the AQ

array, the user may utilize SCALE, BRKARY or BKARAD to distribute the

heating rates to the proper source locations.

RESTRICTIONS:

These routines are independent of the temperature system being used. All

of the array arguments must reference the integer count set by the SINDA

preprocessor and be of the exact required length. As many calls as desired

may be made but each call must have unique array arguments.

CALLING SEQUENCE:
or

SLRAD I(AA (ZO),A c(ZC),AFA (IC),AT _IC),Ai (IC),AQJIC) )

SLRADE {AA (IC),A _(It),AFA (ZC),AT l'IC),AI('IC),AQ (ZCJ )

SUBROUTINE NAME: EFFEMS

PURPOSE:

This subroutine calculates the effective emissivity E between parallel

flat plates by the following equation:

E = I.O/(I.O/EI + 1.O/El - l.O)

where El and E2 are the emissivities of the two surfaces under consideration.

RESTRICTIONS:

Arguments must be floating point numbers.

CALLING SEQUENCE: EFFEMS(EI,E2,B)

"%

6.8-10



/

THERMAL RADIATION EXCHANGE

SUBROUTINE NAME: SCRPFA

PURPOSE:

To obtain the script FA value for radiant transfer within an enclosure.

The input arrays are formatted as shown for subroutines IRRADI and IRRADE.

The second data value in the AFA array is used as a final multiplier, if

Z.O the script FA values are returned; if _ then script _ FA values are

returned. The script FA values are returned in the ASFA array which is

formatted identical to the _A array and may overlay it.

RESTRICTIONS:

All array arguments must reference the integer count set by the SINDA

preprocessor and all arrays must be exactly the required length.

CALLING SEQUENCE: SCRP FA(_L4(IC),A ¢{It),_tFA(IC),ASFA (!C) )

NOTE: Subroutine SYMLST(ASZ4(!C)+3,ASFA(IC)+I) may be called to list the

_ix values and identify them by row and column number. This routine

and the implicit radiosity routine finalize the half symmetric coefficient

matrix and call on SYMINV(AFA(IC)+3,AFA(IC)+I) to obtain the symmetric
inverse.

6.8-II



¢

A. SAMPLE PROBLEM

A. l Introducti on

Sample Problem l illustrates the usage of several SINDA

features for solving a relatively simple problem.

A.2

A.2.1

Physical System and Mathematical Model

Physical System

The physical system is a hollow "thin-shelled" cube with

one face open to space as shown in Figure A-l (a). A variable

external heat load is impressed on surfaces l and 3.

A.2.2 Mathematical Model

The five-node mathematical model has been generated to

describe the physical system in its environment. The heat load

on surfaces l and 3 as shown in Figure A-l (c) is depicted as a

sawtooth and several of the conductive couplings are considered

to be temperature dependent with a functional form as shown in

Figure A-l (d). Other interconnections and values are shown
in Table A-l.

A.2.3 Objective

The transient temperature response of each of the five nodes
is desired.

A.3 Users Instructions

A.3.I

Among the numerous transient network subroutines (Section

6.2), the user must decide upon a particular numerical inte-

gration scheme. For this example, the explicit forward

differencing method CNFRDL with the long pseudo compute sequence

(LPCS) will be used. Step-by-step users procedure for this

illustrative example follows. The computer listing for this

problem is found on pages A-7 throughA-g.

Title Block (Refer to Section 3.2)

!

8 2

BCD 3THERMAL LPCS

BCD g 5 NODE SAMPLE PROBLEM FOR SINDA
END

Comment: Subroutine CNFRDL requires LPCS.

A-l



A.3.2

A.3.3

A.3.4

Node Data (Refer to Section 3.3.4)

I

8 2

BCD 3NODE DATA

1,64.9,1.,2,114.6,1.,3,36.4,1.,4,62.1,I.,5,102.6,1.

-6 ,-460. ,0.
END

Comment: Node number, initial temperature, and capaci-

tance; thus 1,64.9,1. means: node number, l; initial

temperature, 64.9°F; and capacitance, I. Btu/°F. Minus

sign in front of node number 6 means boundary node. A

dictionary relating relative node number to the actual

node number is given on the computer listing, Page A-7.

Source Data (Refer to Section 3.3.5)

The source data may be inputted in the SOURCE DATA block or in

the VARIABLES l operations block. In this example the VARIABLES

l operations block is employed. In the event the SOURCE DATA

block was to be used, the input would require the SIT option
for nodes l and 3.

Conductor Data (Refer to Section 3.3.6)

I

8 2

BCD 3CONDUCTOR DATA

SIV I,l,2,A25,K21,2,1,4,A25,K22,3,i,5,A25,K23

SIV 4,2,3,A25,K24,5,2,5,A25,K25

6,3,4, .2,7,3,5, .2,8,4,5, .2

GEN -9,4,1 ,l,0,2,1, .2E-g i

-13 ,1,6 ,.2E-9

GEN -14,4,1,2,0,3,1,.2E-9

-18,3,4,. 2E-g ,-lg ,3,5, .2E-9 ,-20,3,6, .2E-g

-21,4,5, .2E-9,-22,4,6, .2E-9,-23,5,6, .2E-9
END

Comment: SIV option allows linear interpolation of a

temperature varying property; input 1,1,2,A25,K21 means:

conductor,l; between nodes l and 2; temperature varying

values in Array 25; multiplied by constant in address
K21. If the conductor is a constant a blank code is

used; thus, 6,3,4,.2: means conductor 6; between nodes
3 and 4; with value .2.

GEN option allows the user to generate a sequence of

conductors ; thus -9,4,1 ,l ,0,2,1, .2E-9 means : starting
with conductor number g (minus indicates radiation

coefficient), four conductors, 9,10,11, and 12, between

nodes l & 2, l & 3, l & 4, and l & 5, respectively

with a value of .2E-9 will be generated.

©

C)

A-2



A.3.5

A.3.6

A.3.7

A dictionary relating relative conductor number to actual

conductor number is given on the computer listing, page A-7.

Constants Data (Refer to Section 3.3.2)

I

8 2

+ +

BCD 3CONSTANTS DATA

T IMEND, 2.0 ,OUTPUT,O. 1

21 ,.2,22,.2,23, .2,24,.2,25,.2
END

Comment: Control constants are listed in Section 3.3.2.2

TIMEND,2.0 means that the stop time for the transient
analysis is 2.0 (hrs). OUTPUT,O.I means that the interval

for activating OUTPUT CALLS is O.l.

The numbers 21,.l mean constants address 21 (this is

concerned with the conductor data) with a value of O.l.

Array Data (Refer to Section 3.3.3)

I

8 2

BCD 3ARRAY DATA

9,0.,50.,l.,150.,2.,50.,END STIME VARYING Q CURVE,

SAWTOOTH

25,0.O,O.75,100.,I.25,END $VARIABLE CONDUCTIVITY
END

Comment: Heat input at three different time points

(O.,l., & 2J are stored in array 9. At points between

the data, • linear interpolation is used. Array 25

contains the thermal conductivity value at two different

temperature points, O°F and lO0°F.

Execution Operations (Refer to Section 3.4)

I

I 8 2

BCD 3EXECUTION

F DIMENSION X(5000)
F NDIM = 5000

F NTH = 0

CNFRDL

END

Comment: 5000 represents the working location. CNFRDL

is the explicit forward differencing subroutine.

A-3



A.3.8

A.3.g

A.3.10

A.4

Variables l Operations (Refer to Section 3.4)

1

8 2

+ +

BCD 3VARIABLES l
DIDEGI(TIMEN,Ag,QI) $ TIME VARYING Q ON NODE l
MI.TPLY(QI,O.5.Q3) $ VARIABLE Q ON NODE 3

END

Comment: DIDEGI is the single variable linear inter-
polation subroutine (Section 6.4).

Variables 2 Operations (Refer to Section 3.4)

1

8 2

+ +

BCD 3VARIABLES 2
END

Coherent: No VARIABLES 2 operations required.

Output Calls (Refer to Section 3.4)

1

8 2

+ +

BCD 3OUTPUT CALLS
TPRINT

END

Comment: TPRINT is the output call for all nodal
temperatures (Section 6.7).

Computer Listing

The computer listing for this five-node example is found
on Pages A-7 through A-g.

\J

A-4



/

2

• 6 (Space)
-460°F

4 5

3

2

{a) Five-Node Model (b) Five-Node Model Folded

Inside Out

%.

T

0 l 2

Time (Hr)

25

15

0

0 lO0

Temperature

¢... •

HEAT INPUT

Variable

Node l, Ql - 50, Q2 - 150

Node 3, Ql = 25, Q2 = 75

Nodes 2,4,5 Q = 0

(c) Heat Input Conditions

FIGURE A-l.

Conductors : al2

a14

al5

a23

a25

(d) Variable Conductors

FIVE-NODE HOLLOW CUBE MODEL

A-5



"_ 0=" 0" " _ " ' _-

"_ ::3 '='1 _1133 _3 _3
_,._o =_ _ =

'o o. o. o. o. o. .,_= o .,_= o o

X

o.
0,,,I

,-,,I

1=3 1_ ==3 a3 _ ¢=3 l_3 _3 I_3 a3 1_3

o= ==
=: ,._,.0.o o o o o o o o o o";" ";" 'T o ,- ,- ,-- ";" ";"
_ _ 'o 'o 'o 'o 'o 'o ,- .-,- o o o ,_ ,_ ,_ ,._ o o

x x x x x x x x x x x
_ _ o. o o. o. o. o o. o o o o.

el,,_

2 Z _ =" 2=__ oo o_ ooo0o

_ == =,,_0,,- _ = =

OJ = _ 4,_" 4,_
f,.. _.n _ en X X X

0

©

I/I
4=_

_1- t3 0 t3

0

0

A-6



I
i 09

!
i ,

F
L
I

I

t :

A-7



+.

oi

"+ _,1

n

ii

! I++'!N," ++-= . ,., . . .

° ,_ : . ,o ;. _ . *, o ,

..: & © o, ,_ .. o ,.

i_ _ • " _,_ • • , "-i_ •
'" :.o _ _ ,.o o .o o .o , o* .o! o .o

41. _ _ _ 4_0 •

._ .+ : + .-.., .+. _ -

=o.. io.= o i =0 =0 ,: :

° _,, .:. 'o o., . . i.! •= + :

41.. 11 • ,411 ii,, _ i,,,.

".: : "',i ". :'

, ..i t "_ ' _i i

i! !_, = 0'_ _?
0 . i O' *

o= ° oi _ .. , ° .. _==..
o o i o

= ==..=. o .: o . ..=! P,,

i _ ,-. ,..

Im PIe t e,- 411 I" I_

i- , _" o _ + o '
." .+, +++I: +. +I _ +-+'0, _+ oo _ ,.. o o

•; + +':t + . +' "' ++°_- I+++," + :.
• Ioo OIO• + o.o : _+ : _..

, o. _ "',_ _ . ..
' :I,

Im, r _IP,'

I'

I ,1
o_
• E

• o _

i

:" '- I:": '-,.: =" "

° " " I_

I

\.J

,A-8



(

-- I

; i

,,,.I
=!

, ! I I; ,q i ,,, ,q

+io+!
, -,41

" If '"k IF'
lip I II

O • 04 • O i1

=,.. °o _,..
o ,,, o° o°

,; . & ,:T .. o. o ,-
0+ ,.

-- _.-"; • . .; o .o ; o o; o o o : _ o: o o

,_ _ _ _ _ _" o

I_ 41 4,1 41m all II II

II Ill a • lie • dl • J • • Vl

o o o° oo oo p., oo, oo oo
-. +_ " _:

: . o . o, o . o, • o • o o
I_ ,l* I_ Ik+-. *. ; ,:, *. % " _

. , . .., • • i . _ • . ._ .

I" - :.I ' : ; ' +- +:

++++ + +++++I .+ " ,-+ ++ .,. -'+
•_ ,,'+ .-,+...l,,. +I,., [lid I" I"+

I +",o, ,., o _ , o
. o .. :. _ ,., .+ ..+ • ,,, .

41+ _vll ir 141, i_ i_

• I R. _ w I+ ,4, _--" + _ +i + + +i°..... °• .,. • -, ." • r-. _.- - • • _ ,,',. _"

-+ - , - ,I, • + ,•.., l'.., . r.. :, I - "-,, i; "., "-,, ; ..,, -".- .., -"-,-
I + ,

I + , t: I
_+ It.. if.. t ,= ; . ; " ; ,-+ ; "

ii - _ _ - i: .....o = to = o p _ '+ ,.= o' ,,,
_I • I IOl IFl +4 + Ill

• . . ++: = .-' ° -i_ "' ", - ? , ,:._ . - _ .., ,. .. . .. . ,= _ -, . -
o o .* o . o * , • +o * o, * oo - oo. _ m o o m o • o . o . I_ o m o0 II ,

O, O O O O IO O' O O O

o _ o. ;:,, o. ,?,,: o. _ o , o ,?,, o ,., o • o o

+ , I + el •" "+ " ' I" t+ + ',,. _,
4ql

- l- !i
", _. ' p, _,, P+ _ _, _ _, _o _ : _ o_ .
o'. o o ...,- o _I ., ,.. o_ o o o o -tilt O, *1_ 0 1+,1 ¢1 ell 10 4110 + • 0 0

oo 1 ++ 0" o" "
O ,, o ,* o *' o _ O * " * O * O ,o *= ++-.,.- - _
o - ,=, - . • .;. ... .= .o "i o -

:.; .. . ...... .... +,
i -'_': +-: "t ....: : " "., .. ..• "'" "" "I' "" _'?'' "" + :_ :'; i :+_ +'++ i_ +_ ,-+ .....- - "t- "-: '.'- .-I :; "

" "" ;" "+ " " i* " "" I i

I + i ii + i 'i i + ; , I , ; _ ,

Z
0
m

+:.
911
II

0
II.

P,
I

I

]i.
m

=I

.i
I

ei

i I

II

III'

i.I
J

:I
"I

o

N
I¢ •

.J

• o

O, •

o j

_ 0

A-9



Ij

B. THERMAL NETWORK CGRRECTiON PACY_GE

B.l Introduction

The thermal network correction package consists of a number

of subroutines, many of which are internally programmed as part:

of a larger program subpackage such as STEP which is discussed in

Appendix C. These subpackage programs are not totally integrated

and must be employed in a stepwise procedure. Major subpackages

are denoted Data Comparison and Plotting, Sensitivity Analysis,

and Parameter Correction. Detailed operational procedure from

test data to a corrected network and theoretical development are

reported in References B-l and B-2. Major considerations and

users instructions are reported here.

B.2 Theoretical Development

Kalman filtering was chosen over other methods because it

offered a way to solve some of the problems presented by tempera-

ture measurement sparsity, yet retains solution simplicity when

the number of measured temperatures in a region is complete.

Governing equations are presented for the case of temperature

sparsity and for the special condition of complete temperature
measurement.

B.2.1 Sparse Temperature Measurements

Consider the heat balance equation

dT i _Qi(t) n aij n bij (Tj4
= Ci + _ (Tj - T i) + o _ -j:l ci j:l ci

Ti4) (B-l)

i = 1,2,...,n

where: Ti

t

aij

Ci

bij

is the temperature of the nth node

is the time

is the conductance

is the capacitance of the ith node

is the radiation coefficient

For a thermal model that contains n nodes with m nodal

temperatures measured, where m _n, the random noise corrupted

B-l.

B-2.

Ishimoto, T., Gaski, J. D., Fink, L. C., "Final Report, Develop-

ment of Digital Computer Program for Thermal Network Correction,

Phase II--Program Development, Phase III--Demonstration/Applica-

tion," September 1970, II027-6002,R0-000, TRW Systems Group.

Ishimoto, T.., Pan, H. M., Gaski, J. D., and Stear, E. B., "Final

Report, Development of Digital Computer Program for Thermal Network

Correction, Phase I--Investigation/Feasibility Study," January 1969,

l1027-6001-RP-O0, and June, 1969, l1027-6001-RP-OO:Addendum, TRW

Systems Group.

B-l



measurementvector, {y*}, is an m by l vector whose elements are
given by the m noise corrupted measured temperature. This is
given by

w*}T- ... ... (B-2)
= random noise corrupted measured temperature for the

where TT ith node, i = 1,2,...,m

Sum of model parameters and isothermal nodes is p. The state

vector is a p by l vector whose elements are the n nodal tempera-
tures and the (p-n) mod'el parameters. The (p-n) parameters are

represented by

The state vector is indicated by

Qi
. "_l__].j_) (B-3)

{x}T= (Tl T2 "'" Tn' _ii "'" Ci i
• m

Relationship between the measurement vector and the state vector

is given by the following matrix observation equation:

{y*} = [M] {x} + {W} (B-4)

In equation (B-4) M is the m by p measurement matrix given by

[ iI I

M = i 0 (B-5)

(m x m) I j

and {W} is the m by l random measurement noise vector whose elements

are the random noises associated with the m measured temperatures.

This is given by

{w}T = (WI W2 ... Wm) (B-6)

Details of the derivation of the Kalman filter may be found

in the cited Reference B-2, Page B-l; the following summarizes the

Kalman filter equations whereby the correction of thermal model

parameters can be obtained sequentially.

{Y*}t = [M] t (x}t + {W}t (B-7)

{x}t+At = [U] t {x}t

A

{x}t--{Xa}t + FB]t ({Y*}t " {Ya}t )

(B-8)

(B-9)

(Ya}t = [M)t {Xa}t
(B-lO)

©

B-2



f-

L

[BIt - [AIt[t,llt

[JIt - (ill - [B]tIMlt ) [A]

{Xa}t+At = tUlt(x}t

(A)t+at - {UIt [J)t [U]tT

T(IM] t {A]t[Mlt T + [W)t)-I (B-ll)

(B-12)

(B-13)

(B-14)

where {Y*}t

{x} t

{W}t

{X}t+A t

{M}t

{Xa}t

[BIt

[A]t

[J]
t

[ult

= random noise corrupted measurement vector
(temperature) obtained at time,t.

= value of the state vector (unknown parameters)

at time,t.

= random noises associated with the measured data

obtained at time,t.

= value of the state vector (unknown parameters) at

time,t+At.

= measurement matrix evaluated at time,t.

= new estimate of the state vector (unknown para-

meters) after processing the measured data obtained

at time,t.

= a priori estimate of the state vector (unknown

parameters) before processing the measured data

obtained at time,t.

= measurement weighting matrix evaluated at time,

t (the time varying gain).

: EI({x} _ {x_}) ({x} - {x.})T], error covariance
matrix Tor the a priori Bstimate state vector.

: E[({x} - {_}) ({x} - {_})T], error covariance

matrix for the newly estimated state vector.

= transition matrix.

Given the correction scheme whereby the Kalman filter equations

are used, the following steps are performed:

(1) First obtain an a priori estimate for the state vector {Xa}t

and the associated error covariance matrix{A]t;

(2) Calculate the time varying gain[B]+ using the equation (B-ll)
and the first set of measured data_

(3) Obtain new estimate for the state vector, {x}t usingequation
(B-9) and the first set of measured data;

(4) Calculate the error covariance matrix, [J]t for the newly

estimated {x} t using equation (B-12);

(5) Update the newly estimated state vector, {_}t with equation

(B-13) to obtain the new a priori estimate at time t+AT and

calculate its associated error covariance matrix using

equation (B-14).

B-3



B.2.2

(6) Repeat Steps (2) to (5) using the new a priori estimate for
the state vector and its associated error covariance matrix
with the second set of measureddata.

(7) Repeat above until all the measureddata have been processed
or until desirable results* are obtained.

Temperature Dependent Parameters

For temperature dependent parameters, the coefficients are
considered to be of the form

aij = a°ij f(Ti,T j) (B-IS)

bij = b°ij g(Ti,T j) (B-16)

Only the constant portion of aij and bii_ a°il_ and b° is' ij'

to be corrected and the functions f(Ti,Tj)__ and g(Ti,Tj)_ are con-
sidered to be known.

Using equations (B-15) and (B-16) for the ali'S and the bij's,
the heat balance equation for node i can be written as,

dTi Qi n a_j n b.°.

_=dt _ii j=l+_(C-T'-)f(Ti'Tj)(Tj-Ti)+j=I_a(_I--!'O-)g(T'_ii'Tj)(Tj4"Ti4) (B-17)

Complete Temperature Measurements

It was indicated above that if all of the nodes are monitored,

a very large network can be corrected. This is possible because the

governing heat balance equations can be operated singly and time-

wise sequentially. The Kalman filter is formulated to take

advantage of this special temperature measurement situation.

The Kalman filtering equations may be formulated by first
arranging the heat balance equation at the ith node such that the

known quantities (hard parameters, temperature, and temperature

derivatives, if C is hard) are on one side of the equation and the

k unknown quantities (soft parameters) are on the other side.

The set of k equations of the ith node plus some random noise

associated with the measurement data will yield the following
matrix equation:

{Y_} = [Mi]{x i} + [Wi] (B-18)

where {y_} represents an artificial measurement vector at the ith
node composed of hard parameters and temperature data.

* Desirable results are those results whose variance are smaller

than specified values.

©

B-4



r__"

B.3

B.4

[MI|

(xi}

{Wi}

is the artificial measurement matrix that involves the

coefficients of these unknown parameters.

is the state vector formed with the unknown model

parameters.

is the random noise matrix associated with the measure-

ment data.

If the unknown parameters are considered to be constant, the
updating matrix, [U], is essentially an idehtity matrix. With

{xi}, {y_}, [Mi], and [Ui] now formulated, the Kalman filtering

method is completely identified by assuming a priori information

for the unknown parameters.

After the unknown (soft) parameters for node i are determined

the procedure is repeated for the jth node with the exception that

any parameter of the jth node that was corrected with the ith node

solution is set to corrected values and designated as hard for the
jth node.

Operational Procedure for Correcting a The_nal Network

Operational procedure from test data to a corrected network

is a multi-step process with the interface between steps requir-

ing special user attention. Some attention was given to integrate

or eliminate some of the interfaces but network size and the need

for flexibility requires direct user participation. Higher is

the degree of automation, less flexible and less general is the

resultant network correction program. The overall operational

procedure for thermal network correction recognizes the need for

user simplicity but was based upon flexibility and generality

considerations. A flow diagram with separate program packages

and interfaces is shown in Figure B-l; a description of the

operational procedure is reported in Reference I.

Data Comparison and Plottin_

Comparison of test and analytical temperatures for the pur-

pose of isolating those that are out-of-tolerance requires several

sub-steps before temperature comparison can begin. Out-of-tol-

erance criterion is determined from accuracy assessment of analytical

temperatures; for the latter, a sensitivity analysis program called

STEP offers a way for this assessment. Discussion of STEP and

users instructions are presented in Appendix C.

Due to the indeterminate amount of data that haye to be

processed, the comparison and plotting capability was coded as

two separate subroutines, COMPAR and PL_TMP. These subroutines

are coded in such a manner that they may be called in the same

B-5



_- I
_ I
_fl* Crow a

--T--"
I
t

I

!

_, I i

8

o.

,. ,=o =

e=_W

Z_
I=--

"=_ LmJ
Q=a.

_.=..
w=,JI=,-

_._ I i

i.,- 0

_ l.m.l

I '
I -I

mG_m m mm _mmRm m Immumm_

I-" II_ i

,j
I

I

I
I

i

I

_1 I

_! I

==I I

I

].... M

t

w

i g

-r-
t I
I I

!
I
I

I
I
I
I
I
I

I
I
I
I
I
I
I
I

•. I
'T
_o

uJ I

I _ C, .

I
I

I
I
I

_"_ I

0

!

--r-"

X _

7"-
I
I

._.L

_Z

i

w

_lliilll i[lil ! I il

B-6

©



BLS

B.5.1

run or in a batched mode; The actual plotting is done by internal

calls to SC-4060 quick pJot subroutines which have identical names

and arguments to the CINDA-3G SC-4060 quick plot subroutines in

use at NASA/MSC. Description and users instructions for C_MPAR

and PL_TMP are presented in Table B-l and Table B-2, respectively.

Parameter Correction

Parameter correction of a large thermal network with temper-

ature sparsity requires a means of assessing unobservability,

observability, and the correction of the parameters. Unobserva-

bility of a network is determined as part of the KALFIL subroutine

and observability of a network is pursued with a separate subroutine

called KALBBS. The need for two separate subroutines is a direct

result of the two Kalman filtering formulation. Subroutine KALFIL

processes the network equations simultaneously whereas subroutine

KALOBS processes the network equations singly and sequentially.

In general, KALFIL should yield more accurate corrections than

KAL_BS. Integration of both subroutines into a single package

would have unduly complicated the overall thermal network cor-

rection package; the user thus must make a decision based upon

rather simple ground rules. If a network contains totally measured

nodes, KAL_BS is used unless the number of nodes plus the number

of "soft" parameters total less than lO0; for the latter KALFIL is

used. If a network contains a region or regions with complete
temperature measurements, subroutine KALOBS is called first in

order to correct and set hard those "soft" parameters which are

totally observable; then subroutine KALFIL is called for the

remainder of the network. If a network contains only a limited

number of measured temperatures and the measurements are sparsely
distributed, subroutine KALFIL is called.

An important consideration that should be discussed here is

the accuracy of the "soft" parameter correction. The correction

is subject to the observability of the conductors and the accuracy

of the measured temperatures. In some instances, the corrected

parameter values may be in gross error and physically not realiz-

able, such as a negative conductor, but this should not be

particularly surprising since the parameter values merely reflect

the accuracy and observability conditions. On the other hand,

the calculated temperatures with the corrected parameters should

correlate quite closely with the measured temperatures.

Network Correction with Complete Temperature Measurements (KALBBS)

This subroutine is used to correct "soft" parameters that

are contained in a totally observable network or subregions. These

regions are identified as measured nodes surrounded by measured

nodes with the basic smallest totally observable region being a

single measured node surrounded by measured nodes. The heat

balance equations are processed singly and sequentially with the

"soft" parameters set "hard" after correction.

B-7



TABLEB-I 0

TEMPERATURE-TIME HISTORY COMPARISON SUBROUTINE

SUBROUTINE: C_MPAR

PURPOSE:

This subroutine compares two time-temperature history matrices

to see if the data sets agree within some specified tolerance. The

user must supply an array of integer node numbers in the corresponding

order of the temperature data. Those temperature sets which are out-

of-tolerance will have the node number set negative in preparation for

plotting of out-of-tolerance temperatures by subroutine PLOTMP.
(Table B-2).

RESTRICTIONS:

The two time-temperature history matrices must be of equal size

and the node numbers input under the indicator arraymust be in the same

order as the matrix temperature data.

CALLING SEQUENCE:

Where: IA

2_L

TMI

TM2

C_MPAR(IA(IC) ,TCL, TM1 (IC),TM2(IC) )

i8 the _ddres8 of the indicator array

is the out-of-tolerance criterion (°F)

is the firet time-temperature m_trix array •

is the second time-temperature matrix array _

* Refer to Section 3.3.3.3 for matrix format (first column is time)" 4

B-8



TABLE B-2

TEMPERATURE PLOT SUBROUTINE

SUBROUTINE NAME: PL_TMP

PURPOSE:

This subroutine should be used in conjunction with subroutine

C_MPAR. The indicator array is searched until a negative node number

is found which indicates an out-of-tolerance condition. The correspond-

ing temperatures from array TMI and TM2 are then plotted using x and o

plotting symbols, respectively. The actual node number from the

indicator array is printed as a top line heading. The plot produced

requires further processing on the SC-4060.

RESTRICTIONS:

The user should consult Appendix D, Control Cards and Deck Setup,

to check tape designation requirements. Subroutine PL_TMP selects

the appropriate grid limits and then internally calls upon subroutine

PL_TX2. The user must call upon subroutine PLTND after all plotting

has been completed.

CALLING SEQUENCE:

Where: IA

PL@TMP (IA (IC),TMI (IC),TM2 (IC) )

is an indicator array of uctual node n_mbers

preproeessed by subroutine CedAR

is a time-temperature m_trix array*

is a _ime-temperature m_trix array*

* Refer to Section 3.3.3.3 for matrix format (first column is time)

B-9



For this subroutine theoretically all (less one) of the parameters
associated with a given node may be selected as "soft" and correctable,
the user should keep the number of "soft" parameters to a minimumand
in general it is better not to mix a "soft" capacitance with "soft"
conductances and/or source associated with a given node. User instruc-
tions for KALBBSis presented in Table B-3.

Exampleof an input for subroutine KAL_BSis given in Table B-4.
The thermal model used for illustrative purposes is the five-node
model described in Appendix D. Explanation of the various inputs is
indicated directly on the computer print-out as shown in Table B-4.
The model considered here has complete temperature measurements, 6
soft conductors and a perturbation factor of 50%. It should be
particularly noted in this example that someof the input is for the
generation of simulated temperature data and perturbed parameters.
The input when experimental data are used would be different from
the input shown in the example.

B.5.2 Network Correction with Temperature Sparsity (KALFIL)

This subroutine determines the unobservability of network elements
and sets all unobservable elements as "hard" in the indicator vector,

thereby eliminating them for corrective consideration. Subregions

are identified and dummy pseudo compute sequences formed. These

dummy pseudo compute sequences are then utilized by subroutine UMATRX

to form the integration matrix utilized in calculating the B and J

matrices. (Refer to paragraph B.2.1). Integration of the total net-

work is performed by a standard SINDA network integration subroutine.

In this manner the KALFIL parameter correction method for the condition

of temperature sparsity is applied to the subregions simultaneously

as though the rest of the network was totally hard. A subregion

surrounded by unmeasured nodes is less desirable than one surrounded

by measured nodes. The latter isolates the subregion from outside

influences, while the former is susceptible to error propagation

from other subregions not yet corrected. In order to hold external

influences to a minimum, all nodes outside the subregions unde_

construction are forced to the measured temperatures, if available.

The conditions of observability and unobservability as determined

in Reference 2 are listed in Table B-5. In subroutine KALFIL parameters

between unmeasured nodes are automatically set hard (item 6, Table B-5)

since these parameters are completely unobservable. For this subroutine,
it is better not to mix a "soft" capacitance with "soft" conductances

and/or source associated with a given node. Users instructions for

KALFIL are presented in Table B-6.

An example of input for subroutine KALFIL is shown in Table B-7,

again using the five-node model. This example contains 4 measured

temperatures and six soft conductors. Explanation of the various

inputs is indicated directly on the computer print-out.

I

B-IO



TABLE B-3

KALMAN NETWORK CORRECTION WITH COMPLETE TEMPERATURE MEASUREMENTS

SUBROUTINE NAME: KAL_BS

PURPOSE:

This subroutine uses the Kalman filter method to correct soft

parameters that are contained in totally observable subregions. This

subroutine employs the heat balance equation singly and time wise
sequentially. Such a subregion includes all the conductors into a

measured node when all the surrounding nodes are alsomeasured. If an

adjoining node has identical temperatures as the node under considera-
tion, correction is not possible. If total measurements are not

available the user should continue the correction procedure by using
the subroutine KALFIL. This routine removes node source and conductor

numbers from the IC and IG arrays for corrected parameters. KALOBS
is called in the execution block.

(.

RESTRICTIONS:

This subroutine requires the long pseudo-compute sequence (LPCS).

The capacitor, source, and conductor indicator arrays must have their

contents in the same input order as the node, source and conductor data,

respectively. All temperatures must be in the Fahrenheit system.

# "

CALLING SEQUENCE:

Where:

KALOBS(I"PNT, IT(IC) ,IQ(IC) ,IC(IC),IG(IC),HT, TN'P,
QJV'P,OJV'P,GNP )

I"PNT is an intermediate print indicator: I=O,no;I#O,yes

Z_ is an array of actual node nz_bers of measured

temperatures and must be in the same order as the

test temperatures

IQ i8 an array of actual node numbers of soft sources

IC 18 an array of actual nod_ numbers of soft capacitors

IG i8 an array of actual conductor numbers of soft
condc_tora

HT is a time history m_trix of test temperatures, each

row Being a time slice with time as the first val_e

TNP is ths temperature noise esti_te

QNP is the percent of estimated source error times 0.01

CNP i8 the percent of estimated capacitor error times 0.01

GNP is the percent of estimated con_ctor error times 0.01

B-ll



TABLE

I

8 2

÷ ¢

BCD 3THERMAL LPCS

BCD 9 5 NODE PROBLEM
END

BCD

END

BCD

SIT

SIT

END

BCD

SIV

SIV

GEN

GEN

END

BCD

END

BCD

BCD

BCD

BCD

BCD

BCD

B-4: EXAMPLE INPUT FOR SUBROUTINE KALOBS

(Five node model; 6 soft conductors)

FOR CHECKOUT OF KALOBS ROUTINE

3NODE DATA

1,64.9,1.,2,114.6,1 .,3,36.4,1.,4,B2.4,1.,5,102.6,1.
-6,-460. ,0.

3SOURCE DATA

I,Ag,I.O

3,A9,0.5

3CONDUCTOR DATA

I,I,2,A25,K21,2,1,4,A25,K22,3,1,5,A25,K23

4,2,3 ,A25 ,K24,5,2,5 ,A25 ,K25

6,3,4,.2,7,3,5,.2,8,4,5,.2

-9,4,1,I ,0,2,1 ,.2E-9

-13,1,6,.2E-9

-14,4,1,2,0,3,1 ,.2E-9

-18,3,4,.2E-9,-19,3,S,.2E-9,-20,3,6,.2E-9

-21,4,5,. 2E-9,-22,4,6,. 2E-9 ,-23,5,6,. 2E-9

3CONSTANTS DATA

TIMEND=2.0,OUTPUT=O.I

I=6 $ NUMBER OF SOFT PARAMETERS

2=6 $ TOTAL NUMBER OF NODES

3:0.5 $ PERTURBATION FACTOR

21=.2,22=.2,23=.2,24=.2,25=.2

3ARRAY DATA

3,21,6,SPACE,126,END $ TIME HISTORY MATRIX

5,SPACE,6,END $ SPACE FOR INITIAL TEMPERATURES

9,O. ,50. ,l.,150. ,2. ,50. ,END $ TIME VARYING Q CURVE
11,],2,3,4,5,END $ MEASURED TEMPS IN ORDER STORED

12,1,2,3,4,5,6,END $ NODE NUMBERS FOR PRINTMI

14,1,4,8,12,18,23,END $ SOFT CONDUCTOR NUMBERS FOR

15,1,4,8,12,18,23,END $ SOFT CONDUCTOR NUMBERS

25,0.,.75,100.,l.25,END $ VARIABLE CONDUCTIVITY

KALOBS

FOR PRINTMI

91,SPACE,6,END $ SPACE

92,SPACE,6,END $ SPACE

93,SPACE,6,END $ SPACE

94,SPACE,6,END $ SPACE

95,SPACE,6,END $ SPACE

96,SPACE ,6,END $ SPACE

97 ,SPACE ,6,END $ SPACE

98
8 NODE NUMBER

8 ORIGINAL RESULTS

END,99
8 ORIGINAL VALUES

8 PERTURBED VALUES

4 PERCENTAGE OFF

END

FOR ORIGINAL PARAMETERS

FOR PERTURBED PARAMETERS

FOR CORRECTED PARAMETERS

FOR ORIGINAL TEMPERATURES

FOR PERTURBED TEMPERATURES

FOR CORRECTED TEMPERATURES

FOR PERCENTAGE OFF

PERTURBED RESULTS

CORRECTED RESULTS

CORRECTED VALUES

CONDUCTOR NUMBER

0

0

0

B-12



c-)
!

+

F
F
F

F

8

÷

END

BCD

1

2

3EXECUTION

TABLE B-4 (Cont.)

DIMENSION X(5000)
NDIM=5000

NTH=O

TPRI_F

GPRINT

BLDARY(Agl ,K21,K24,GS,G12,GlS,G23) $ SAVE ORIG
SHFTV(5,TI,AS) $ SAVE INITIAL TEMPERATURES
CNFRDL $ SIMULATE TEST DATA

SHFTV(6,TI,A94) $ SAVE ORIGINAL RESULTS
TIMEO=O.O

SHFTV(5,A5,TI) $ RESET INITIAL TEMPERATURES

THE FOLLOWING SCALE CARD PERTURBS SOFT G VALUES AND

PARAMS

FACTORS
SCALE(K3,K21,K,21,K24,K24,GS,GS,G12,GI2,GI8,GlS,G23,G23)

BLDARY(A92,K21,K24,G8,G12,GlS,G23) $ SAVE PERTURBED PARAMS
CNFRDL $ OBTAIN PERTURBED TEMPERATURES

SHFTV(6,Tl,A95) $ SAVE PERTURBED RESULTS
TIMEO=O.O

SHFTV(5,A5,TI) $ RESET INITIAL TEMPS

KALOBS(O,AI],O,O,AI4,A3,0.OI,O.O,O.O,I.O)

BLDARY(A93,K21,K24,G8,G12,G18,G23) $ SAVE CORRECTED PARAMS

SUBARY(Kl,A93,A91,A97) $ OBTAIN CORRECTION DIFFERENCE

DIVARY(Kl,Ag7,A91,A97) $ CONVERT TO PERCENT

ARYMPY(Kl,A97,100.O,A97)

PRNTMI(Kl,A99+13,A15+l,A99+l,A99+5,A92,A99+9,A93

Ag9+I7,A97) $ PRINT THE CONDUCTOR DDTA

SHFTV(5,AS,TI) $ RESET THE INITIAL TEMPERATURES
TIMEO=O.O

CNFRDL $ OBTAIN CORRECTED TEMPERATURES

SAVE CORRECTED RESULTS

,A97) $ OBTAIN CORRECTION DIFFERENCE

.0,A94) $ CONVERT TO RANKINE

,A97) $ CONVERT TO PERCENT, RANKINE BASE
.O,Ag4) $ CONVERT TO DEGREES F

ARYMPY(K2,A97,100.O,A97)

PRNTMI(K2,Ag8+I,A12+I,A98+5,A94,Ag8+9,A95,A98+13,A96

Agg+I7,A97) $ PRINT TEMPERATURE DATA

SHFTV(6,TI ,A96) $
SUBARY(K2,Ag6,A94

ARYADD(K2,A94,460

DIVARY(K2,AgT,A94
ARYSUB(K2,Ag4,460

END

BCD 3VARIABLES l

TIMEM=TIMEO

END

BCD

END

BCD 3OUTPUT CALLS

TPRINT

TESTMP(JTEST
END

BCD 3END OF DATA

,4,TI ,TIMEN,A3) $ STORE ANALYTICAL TEMPERATURES

3VARIABLES 2

B-13



¢u (1.)

i¢2 o

s.. "_o
oJ _J

,,_ ,-.i
o ,r_

s,- _=

Oe--

F= S.. ,L
_, (l,.J ¢LJ

4J t/t

C2. EO

p... c_ ¢l,J
e-- cO S,,-
'¢C _-m

5,-

0

_J
"10
0
¢-

"1o
cu
S..

ul
R5
_J

_J
e-

4J

o cu
%.-,--

L S-
_J _J

U_
_JJ_
EO

S- _J

_J
"I0

0
¢_
S-

Ul
_J _J

"0"0
0 0

"0"0
_J (U
S- ¢-

¢/1 ¢/1

_J _J

CC_

0

q,)
"_ GP

0

%.. e_

u1

"0 "0
0 0

e,- o

B-14

©



TABLE B-6

KALMAN NETWORK CORRECTION WITH SPARSE TEMPERATURE MEASUREMENTS

SUBROUTINE NAME: KALFIL

PURPOSE:

This subroutine performs network parameter correction by the Kalman

filter method. In general it should be applied to the model being cor-

rected after KALOBS has been applied. This routine must be called upon

in the Variables 2 block with CNFRDL in the execution block. It performs

an initial pass in order to reduce (set hard) those network elements which

are uncorrectable due to observability criteria (unobservable). It then

makes a second pass in order to remove from the calculation procedure

_asured nodes which do not contribute to the solution. It then sets up

several square matrices of order N, where N is the number of remaining
measured temperatures and soft parameters, and simultaneously solves the

Kalman filter set of equations. All corrected parameters are set hard

and the corrected values placed into the appropriate network locations.

Immediately after the correction process, analytical check runs can be

performed.

RESTRICTIONS:

The long pseudo-compute sequence (LPCS) is required. This sub-

routine must be called within the Variables 2 block by the CNFRDL exe-
cution subroutine. Noise or error estimates of zero are not allowed.

CALLING SEQUENCE: KALFIL(!,IT(!C),_TC(!C),IG(!C),AT(IC),AJ(IC) )

Where: I

IT

Ic

IG

A_

AJ

is an indicator for intermediate printout: I=O, no;I#O, yes

is an array of actual integer r_de numbers of the

measured temperatures and corresponding, to the AT matrix

is an array of actual integer node n_mbers of soft

o_paeitors and must be in the same order as the node

data input

is an array of actual integer numbers of soft sources

and must be in t_ same order as the source data input

is an array of actual integer conductor numbers of
soft conductors; must be in the same order as the con-

ductor data input

is a matrix of test temperature histor d with the number

of rows being the number of time points, the first colurxn

representing time and the second column representin@ test

temperatures in the same order as the IT _rray

is an array of noise and error estimate squared for

each soft parameter and must be in order with iT, IC,
IQ and IG

B-15



TABLE B-7: EXAMPLE INPUT FOR SUBROUTINE KALFIL

(Five node model; 4 measured temperatures; 6 soft conductors)

!

8 2

BCD

BCD

END

BCD

END

BCD

SIT

SIT

END

BCD

SIV

SIV

GEN

GEN

END

BCD

END

BCD

3THERMAL LPCS
9 5 NODE PROBLEM FOR CHECKOUT OF KALFIL ROUTINE

3NODE DATA

1,64.9,1.,2,114.6,1.,3,36.4,1.,4,62.4,1.,5,102.6,1.

-6,-460. ,0.

3SOURCE DATA

l,Ag,1.0

3,A9,0.5

3CONDUCTOR DATA

l,l,2,A25 ,K21,2,1,4,A25,K22,3,1 ,5,A25,K23

4,2,3 ,A25 ,K24,5,2,5,A25, K25

6,3,4,.2,7,3,5,.2,8,4,5, .2

-9,4,1,I,0,2,1,.2E-9

-13,1,6,.2E-9

-14,4,1,2,0,3,1,.2E-9

-18,3,4, .2E-9,-19,3,5, .2E-9,-20,3,6, .2E-9

-21,4,5,.2E-9,-22,4,6,.2E-g,-23,5,6,.2E-9

3CONSTANTS DATA

TIMEND=2.0,OUTPUT=O.I

I=6 $ NUMBER OF SOFT PARAMETERS

2=6 $ TOTAL NUMBER OF NODES

3=0.5 $ PERTURBATION FACTOR

21=.2,22=.2,23=.2,24=.2,25=.2

3ARRAY DATA

2,10,1,O.Ol,O.Ol,O.Ol,O.Ol $ NOISE ESTIMATES

O.Ol ,O.Ol ,O.Ol ,O.IE-19,0.1E-19,0.1E-19,END $ ERR

3,21,5,SPACE,IO5,END $ TIME HISTORY MATRIX

5,SPACE,6,END $ SPACE FOR INITIAL TEMPERATURES

9,0. ,50.,I.,150.,2. ,50.,END $ TIME VARYING Q CURVE
ll,l,2,3,4,END $ MEASURED TEMP NODES FOR KALFIL

12,1,2,3,4,5,6,END $ NODE NUMBERS FOR PRINTMI

14,1,4,8,12,18,23,END $ SOFT CONDUCTOR NUMBERS FOR

15,1,4,8,12,18,23,END $SOFT CONDUCTOR NUMBERS FOR

25,0.,.75,100.,l.25,END $ VARIABLE CONDUCTIVITY

91,SPACE,6,END $ SPACE FOR ORIGINAL PARAMETERS
FOR PERTURBED PARAMETERS

FOR CORRECTED PARAMETERS

FOR ORIGINAL TEMPERATURES

FOR PERTURBED TEMPERATURES

FOR CORRECTED TEMPERATURES

FOR PERCENTAGE OFF

92,SPACE,6,END $ SPACE

93,SPACE,6,END $ SPACE

94,SPACE,6,END $ SPACE

95,SPACE,6,END $ SPACE

96,SPACE,6,END $ SPACE

97,SPACE,6,END $ SPACE

EST SQRD

KALFIL

PRINTMI

#r_" :

0

B-16



TABLE B-7 (Cont.)

r)

(

÷

F

C

F

F

F
F

1

8 2

g8

BCD 4 NODE

BCD 4 ORIGINAL

BCD 4 PERTURBED

BCD 4 CORRECTED

END

99
8CD 4 ORIGINAL

BCD 4 PERTURBED

BCD 4 CORRECTED

BCD 4 CONDUCTOR

BCD 4 PERCENTAGE

END

END

BCO 3EXECUT!ON

DIMENSION X(5000)
ND!M=5000

NTH=O
TPRINT

GPRINT

NUMBER

RESULTS

RESULTS

RESULTS

VALUES

VALUES

VALUES

NUMBER

OFF

BLDARY(A91,K21,K24,GS,G12,GIS,G23) $ SAVE ORIG PARAMS
SHFTV(5,TI,A5) $ SAVE INITIAL TEMPERATURES

CNFRDL $ SIMULATE TEST DATA

SHFTV(6,TI,A94) $ SAVE ORIGINAL RESULTS
TIMEO=O.O

SHFTV(5,A5,TI) $ RESET INITIAL TEMPERATURES

THE FOLLOWING SCALE CARD PERTURBS SOFT G VALUES AND FACTORS

SCALE(K3,K21,K,21,K24,K24,G8,G8,G12,G12,GI8,GlS,G23,G23)

BLDARY(A92,K21,K24,G8,G12,GlB,G23) $ SAVE PERTURBED PARAMS
CNFRDL $ OBTAIN PERTURBED TEMPERATURES

SHFTV(6,Tl,A95) $ SAVE PERTURBED RESULTS
TIMEO=O.O

SHFTV(5,AS,TI) $ RESET INITIAL TEMPS
ITEST = l

CNFRDL

BLDARY(

SUBARY(

DIVARY(

ARYMPY(

PRNTMI(Kl,A99+13,A15+l,A99+l,Agl,A99+5,A92,A99+9,A93

Ag9+17,Agl) $ PRINT THE CONDUCTOR DATA

SHFTV(5,A5,TI) $ RESET THE INITIAL TEMPERATURES
ITEST = 0

TIMEO=O.O

CNFRDL $ OBTAIN CORRECTED TEMPERATURES

SHFTV(6,Tl,A96) $ SAVE CORRECTED RESULTS

SUBARY(K2,A96,A94,A97) $ OBTAIN CORRECTION DIFFERENCE

ARYADD(K2,A94,460.O,A94) $ CONVERT TO RANKINE

DIVARY(K2,A97,A94,A97) $ CONVERT TO PERCENT, RANKINE BASE

$ PERFORM CORRECTION RUN

A93,K21,K24,GB,GI2,G18,G23) $ SAVE CORRECTED PARAMS

KI,A93,AgI,A97) $ OBTAIN CORRECTION DIFFERENCE

Kl,A97,Ag],A97) $ CONVERT TO PERCENT

K],A97,100.O,A97)

B-17



TABLEB-7 (Cont.)

1
8 2

ARYSUB(K2,Ag4,460.O,Ag4) $ CONVERT TO DEGREES F

ARYMPY(K2,A97,100.O,A97)

PRNTMI(K2,A98+I,A12+I,A98+5,A94,A98+9,A95,A98+13,A96

A99+lT,A97) $ PRINT TEMPERATURE DATA
END

BCD 3VARIABLES l

END

BCD 3VARIABLES 2

IF (ITEST .EQ. O) RETURN

KALFIL(O,AII,O,O,AI4,A3,A2)
END

BCD 3OUTPUT CALLS

IF (TIMEO .EQ. 0.0) CALL VARBL2
TPRINT

TESTMP(JTEST,4,TI,TIMEN,A3) $ STORE ANALYTICAL TEMPERATURES

END
BCD 3END OF DATA

©

B-18



d

B.5.3

B.6

Time-Temperature History Matrix (TESTMP)

Subroutine TESTMP which is part of the parameter correction

package aids the user in forming a time-temperature history matrix.
Users instructions are given in Table B-8.

Sensitivity Analysis

Accuracy bounds of the analytical temperature may be generated

by the use of the sensitivity-temperature error program (STEP).
Theoretical development of STEP and brief users instructions are

presented in Appendix C. For details on the overall program

instructions, the reader should refer to Reference B-3. STEP provides

a means of generating temperature uncertainty due to parameter

uncertainties and a means of assessing the relative "hardness" or

"softness" of a parameter with respect to a given temperature.

F_- .

B-3o Karplus, W. J., Anal o9 Simulation_ Solution of Field Problems,
McGraw-Hil l, 1958.

B-I9



SUBROUTINE NAME: TESTMP

TABLE B-8

PURPOSE:

This subroutine aids the user in forming a time-temperature

history matrix.

RESTR ICTIONS:

See below.

CALLING SEQUENCE: TESTMP (I,J,AT(DV),X, AM(IC))

Where: I is always a zero integer

J is. the number of values to Be scored from AT

AT is the start of an array of values to Be stored
in AM

X is generally TI_N cnd i_ always stored ahead of AT

AM is a m=trix array which _st have J+1 col_s

NOTE:

This subroutine is generally called upon in the Output Calls

block. Each time it is called I is updated by one and another row

added to the AM matrix. When AM is full its operation ceases.

_r-,.%

0

B-20



Cl

C.I

STEP (S_ensitivity T_emperature E_rror P_rogrem)

Introduction

Subroutine STEP (Sensitivity-Temperature Error-Program) generates

static sensitivity coefficients that may be used to assess the rela-

tive parameter effects on a specified temperature or to assess the

uncertainty of a given temperature. Theoretical development is

reported elsewhere,* but briefly STEP is based upon a derivative

operation on the steady state heat balance equations.

J--I J J= j - Tj)

i = 1,2, .. , n

(c-i)

where: Qi Is the net heat input to the ith node

aij is coefficient for conduction and/or convection

bij is the coefficient for radiation exchange

p is the sum of n variable and p-n fixed temper-

atures ,

The derivative operation is conducted in terms of Qi' aij' bij'

•and Ti (j>n) and is expressed in a matrix form; the solution of
matrix equations yields sensitivity coefficients

BTi

Bak_ , for k = I, . . , n
= k+l, .. , p

@Ti
, for i --I, . . , n

--R_-
k=l, . . ,n

_ = k+l, . . , p

BTi
_, for i = I, . . , n
@ak_

k=l,. . ,n

_ = k+l, . . , p

, for i = l, . . , n
k=l, . . ,n

BTi

_-_k , for i = I, . . , n
k = n+l, . . , p

(c-2)

(c-3)

(c-4)

(c-s)

(c-6)

Ishimoto, T. and Bevans, O. T., "Temperature Variance in Spacecraft

Thermal Analysis," J. of Spacecraft, Vol. 3, No. II, pp 1372-1376,
November 196B.

C-1



The sensitivity coefficients indicated by equations C-2 through
C-6 are employed to generate temperature deviation expressions.

RandomTemperature Deviation

The temperature deviation in the randomsense, (ATi) r maybe
expressed as:

O

I n aTi P BTi(aTi)r = k=IT (_Tk aQk)2 + k=n+lS (aTk aTk)2

÷ z E ( TkAak )2+  bk )2k=l _=k+l

(C-7)

Linear Algebraic Temperature Deviation

If the parameter perturbations are deterministic, then the
temperature variations should be based upon the algebraic sum of the

individual parameter perturbation effects. If (_Ti!a represents the
linear algebraic temperature deviation, the expresslon is written as:

n _Ti p aTi

(_Ti)a = k=I__Tk aQk + k=n+l_ aTk _Tk

÷
n p _Ti aT.

_. _ Aak_ + I

i = l, 2, • • , n

(C-B)

Linear Absolute Temperature Deviation

If a worst-case temperature deviation is desired, the partial
derivatives and the individual parameter perturbations are evaluated

in an "absolute" sense. If (aTi)ab represents the linear absolute
temperature deviation, the expresslon is written as:

n I _Ti
(aTi)ab = k=IZ _T k aQk °l TiL+ _: ATk

k=n+l

+
n p
T. T.

k=l _=k+l

+ BTi

(c-9)

i=l,2, . ,n

©

C-2



V

f

C.2

C.2.1

C.2.2

C.2.2.1

C.2.2.2

C.2.3

C.2.3.1

C.2.3.2

C.2.3.3

C.2.3.4

C.2.4

C.2.4.1

C.2.4.2

C.2.5

C.2.5.1

C.2.5.2

STEP User's Directions

SUBROUTINE NAME: STEP

PURPOSE

For generating static sensitivity coefficients with respect to

akz' bkz' Qk' and Tk (for boundary nodes).

For generating temperature deviation in the root mean square
sense, in the algebraic sum sense, and in the absolute value
sense.

RESTRICTIONS

CINDSL must be called before STEP is called since the long pseudo

compute sequence and the arrays containing temperatures, con-
ductances, and heating rates are utilized.

Parallel linear or parallel radiation conductors are not permitted.

Al and A2 mgst be positive arrays.

The maximum number of nodes (diffusion plus arithmetic) that can

be accommodated is approximately 200.

CALLING SEQUENCE

STEP (AI(!C),A2(IC))

where: A1 (IC) is the array r_mber for print specifications

A2 (IC) is the _ray number for variance specifioations

Format, A1 and A2

IC, PC, Op, Op,...Op, Po, Op, .... ,END

where: IC is the array number

PC is a parameter code (Refer to Table C-l)

Op is an option (for A1, refer toTable C-2; for A2

refer to Table C-3)

NOTES

This subroutine requires N2 + P locations of dynamic storage.

N is the sum of diffusion and arithmetic nodes (non boundary
nodes) and P is the total number of nodes (diffusion plus

boundary nodes).

In Table C-2, for the option designated by NODE, approximately

lO0"node numbers may be specified.

C-3



C.2.5.3

C.2.5.4

C.2.6

C.2.6.1

C.2.6.2

C.2.6.3

C.2.7

In Table C-3, approximately 35 individual variances may be

specified, not including those generated under option ALL.

Based upon a number of models ranging from 30 to 164 nodes, the

solution time can be estimated in a very approximate sense by,

Solution time (minutes) = I/2 (_0)2

where n is the number of nodes (diffusion plus arithmetic)

ILLUSTRATIVE STEP INPUT

The STEP input itself is illustrated directly below, but it

should be noted that STEP requires SINDA input considerations.

The combined STEP-SINDA requirements are illustrated in a step

by step fashion in Table C-4.

Array AI l,A,LIST,ALL

B,PURE ,ALGORD ,NODE, l,4

Q,ABSORD ,NODE ,2,3

CONT ,ALL ,PURE ,DELTA
DELTAT ,ENT

Array A2 2,A,ALL,. l ,B,ALL, .l ,3,4, .05

Q,ALL, .08,2, .l,4,.I ,CONT,ALL, .05,END

Note that the node numbers specified are actual, not relative
numbers.

FLOW DIAGRAM

A flow diagram of the major logic for the STEP subroutine is

presented in Figure C-l.

©

©

C-4



PARAMETER

CODE

A

B

Q

CONT

DELTAT

TABLE C-I

PARAMETER

Linear conductors

Radiation conductors

Source terms (heating rates)

Constant temperatures

This is not a parameter, but rather a signal

to the program to calculate and print the three

types of deviation. Use in array Al only.

Options in Table C-2 do not apply.

TABLE C-2

OPTIONS

LIST

ALL

PURE

DELTA

PURE,DELTA

ALGORD

ABSORD

MULT,n

NODE ,i],i2,...

EXPLANATION OFOPTIONS

The parameters and variance printed.

All sensitivity coefficients multiplied by

the parameter variance are printed.

Sensitivity coefficients (not multiplied by
parameter variance) are printed.

•Sensitivity coefficients multiplied by para-
meter variance are printed; this option need

be used only in conjunction with option PURE.

Both outputs under PURE and DELTA are printed.

Each set of output called by ALL or PURE is

arranged by the magnitude of algebraic
values from the largest to the smallest.

Each set of output called by ALL or PURE is

arranged by the magnitude of absolute values

from the largest to the smallest.

Output as called by ALL or PURE is limited by
the print limiting multiplier, n. The

sensitivity coefficient, dT, is not printed if
BY

dT dT
BY < n BY max

The sensitivity coefficients for the speci-

fied nodes (ii,12,...) are printed.

C-5



/

TABLE C-3

OPTIONS EXPLANATION OF OPTIONS

All,n,i l,m l,i2,m2,..,ik,m k

All ,n,iI'J1'm1" ""

This option applies to parameter codes
Q and CONT only. The variance will be

computed from the relationship,

variance of parameters = n (value of

parameter)

unless exceptions denoted by

il,m l, i2, m2,..., ik, mk

are specified, i k is the node number

and m k is the factor defined in the
same manner as n.

This option applies to parameter codes
A and B only. It is similar to the

option above except that the user must

supply the adjoining node numbers

(ik,Jk) for the conductors.

©

C-6



I'--
(/7

..J
..I
i,--e

I
0

--J

I"

U')
I'--

2:
C)

I.--

ira4

ira.

c-
O =

elm

.I..J
e'_

C:)

U')

Q.
..J

"" I'-" =
W
-.r- I--
i--

e._ e._ -
¢..)

,.n e,_

_J

0

c-
O

q,m

C

P..
S-

Er--

q" C

¢_ 0 ,r-
e" U

•1-- tO _

4) U _

0 4),I_
4_ e- ,r-

i-

S-
O

a

0

e" I_

E_

0

0

4) .r-
E W_

,_. ._. q_ 4)
S- ¢,,) _ r--

E O
E _

,.e _ "_.'_
! I..- C_

Z
_ Z Z !

I"-

<=

-, c_ z

t'_ Z

CQ ¢_ !

¢_1 (")

e".,

IJ.I

C-7

LC)

2:
LLI

/



l'--
Z
L_

C_

I,--

Z
M

x

I-- cM e_
_C z e_

I,-- x

0 r'_

U ..I ('_ .-- ;E U

I'-- a3 CO _ 0'_ ,-"

.,4

.=I

¢
t_

.-I

V

©

Q

C-8



,\

Q.

I,,,4

C-g



Z

Z

N

;,. <
IJ _, e

_.2..
ef,,_

,,,_ ,laCO •

_. 5 s'-"

UI P'-
r- q-- _" (M

4=1 1-- ;;=

0 _'" _"

I::

e,,.,'P=,.-_--U) f,_1

t_ I..U_J 0 t"

_--, U.

tM f'_
5- o

Z
W

e== r_

-=I t",,l

IJ.I
I,/')

r-_ u.

123 v1

ul
_1 ,.J

..J

I.IJ
-J
m I---

_L
C_ I'--

;;_ (J _" (J

I'--
;=
Iml

{1. _"

.,=r ul

I "m i m.- p p p p I---

©

0

C-I0



ml i

ENTER STEP

I SET UP CALCULATIONFLAGS
FROMPRINT ARRAY

i

J,

I SET UP AND INVERTTHE BETA MATRIX

m,

i WRITE BETA INVERSEON DRUM, BY ROWS

i ii,

J START LOOP TO COMPUTE
PARAMETERDERIVATIVES :

['1

I
I

I
READ THE I-th ROW OF
BETA INVERSE FROM DRUM

DESIRED ?

NO

YES COMPUTEDERIVATIVES. SUM
AND/OR PRINT AS REQUESTED

/abkz DESIRED ?

NO

/aQk DESIRED

NO

aTt/aT k DESIRED ?

YES

YES

YES

COMPUTEDERIVATIVES. SUM
AND/OR PRINT AS REQUESTED

COMPUTE DERIVATIVES. SUM
ANO/OR PRINT AS REQUESTED

COMPUTE DERIVATIVES. SUM
AND/OR PRINT AS REQUESTEO

I-N?
NO

I'I÷l

RETURN

FIGURE C-I:

NOTE: N - NUMBEROF VARIABLE
TEMPERATURENODES.

MAJOR LOGIC IN STEP

C-11



,C- _-

f,v

<

Do

D.l

NASA/HSC SYSTEM DEPENDENT RUN DECK INFORMATION

BASIC RUN DECK

I

J,

vZ RUN badge, div,box,proj ,prog, P, time,pages

vN MSG FILE REQ. TAPES I FH432 m FSTRN n

V ASG F=SINDA-Production-Tape-ReeZ-Number

***ADDITIONAL ASG CARDS- SEE SECTION _1.I ***

v XQT CUR

TRW F

IN F

vN XQT SINDA/PREPR0

***SINDA INPUT DECK***

V XQT CUR

ERS

IN F

vN FBR,K SINDA

vN FBR,K EXECTN

vN F_R,K VARBLI

vN F_}R,K VARBL2..

VN F_R,K _UTCAL

***LOAD AND GO ROUTINES***

vN XQT SINDA

***AUXILIARY DATA_ DECK***

v E(_F

6

1

+

n_g

where: V = 7-8 multiple punch

ADDITIONAL ASG CARDS*

Normal Run; Input from Cards; No Store/Recall; No Edit

D.l.l.2

I

v ASG D,J,K,M

Run Usinq Edit Option 1

1

+

v ASG D,J,K,M

vS ASG Z=SAVE Edit Output Tape

*Sections D.l.l.l through D.l 1.6 are mutually exclusive.

D-l



D.1.1.3

D.1.1.4

D.l .l.5

D.l .l.6

D.I .l.7

D.I .2

Run Usin.q Edit Options 2 or 4

1

v ASG D,j,K,M

v ASG Y=Edit-Input-Tape-Reel-Number

VS ASG Z=SAVE _ This oard present only if Edit Output Tape is desired.

Run Usin 9 Edit Option 3

1

v ASG D,j,K,M

V ASG Y=Edit-Input-Tape-Reel-Number

Run...UsinaSTOREP Feature

I

V ASG D,J,M

vS ASG K=SAVEP ' _ Proaessed Program Tape

VS ASG S=SAVED _ S_ore Data Tape

Run Using Recall Option

I

v ASG D,J,M

v ASG K=Processed-Program-Tape-Reel-Number

V ASG R=Reoa_l-Data-Tape-Reel-Number

Run.Usin 9 Data Plotting Subroutines

One of the two following cards must be included with the other

required ASG cards whenever plots are generated during a run:

1

VS ASG P=PL_)TS _ For OALOOMP Plots

V PLT _ For IS_ Film Plot8

MSG CARD

To compute _, m, and n on the MSG card, tally the number of files

as follows: (a): Count 1 TAPE for each file defined with an ASG

card which contains an equals ,=, sign. (b): Count the number of

FH432 (High-Speed Drum) files as l, unless Edit Option 2 or 4 is

used and the Edit Output Tape is NOT desired, in which case, count

the number as 2. (c): Count l FSTRN for each file defined on an ASG

card which contains only letters, separated by commas, following the

ASG. Count one file for each letter.

D-2

0

©



D.1.3

D.1.4

D.2

D.2.1

D.2.2

D.3

D.3.1

D.3.2

DIAGNOSTIC INFOP.MATION

Limited diagnostic aids will be printed by the system if the 'N'

in column 2 of all control cards is deleted. Complete diagnostic

aids will be printed if each 'N' in column 2 is replaced by an 'L'.

CORE DUMP

A complete dump of core memory, in OCTAL notation, will be printed

after a SINDA run if the following card is included in front of the

E_F card:

I

v PMD

FORMS

JOB TICKET (MSC FORM 588)

Tape Reel-N_nbers shown on ASG cards are also listed in the INPUT

TAPES section of the job ticket. FiZe-Ncc_nee (i.e., SAVE, SAVEP, etc.)

shown on ASG cards for tapes to be saved are also listed in the

OUTPUT TAPES section of the job ticket.

TAPE SAVE LABEL (MSC FORM 874)

Tape save labels are required for all files defined with ASG cards

having an'S' in column 2.

TAPE USAGE

TAPES USED SPECIFICALLY BY SINDA

Table D-l lists all of the tapes and files which are specifically

used by the SINDA preprocessor and library.

MSC FORTRAN FILE ASSIGNMENTS

Table D-2 lists the logical files and physical devices assigned

to each FORTRAN UNIT NUM_BR by the MSC system.

D-3



TABLE D-l: TAPE UNITS USED BY SINDA

PROGRAM FORTRAN SYSTEM RECOMMENDED

TAPE NAME VARIABLE UNIT UNIT DEVICE

Actual/Relative Dictionary Tape

Processed Data Tape

Processed Program Tape

Baseline Processed Data Tape

Preprocessor Scratch Tape

Recall Data Tape

Store Data Tape

Reread Unit

Edit Input Tape

Edit OutPu t Tape

SINDA Production Tape

Matrix Input Tape

Matrix Output Tape

LUTI

LB3D

LB4P

LUT3

INTERN

LUT7

STAPE

KRR

NEDIN

NEDOUT

m

MIN

MOUT

4

12

13

15

27

21

22

30

28

29

8

14

16

D

J

K

M

X

R

S

Y

Z

F

L

N

FASTRAN

FASTRAN

FASTRAN/TAPE

FASTRAN

FH432

TAPE

TAPE

i

TAPE

TAPE/FH432

TAPE

TAPE

TAPE

©

D-4



#

°

:,,,,

,k

W

t

,k

"k

W

,/r

TABLE D-2:

i

FORTRAN

LOGICAL UNIT

NUMBER

FORTRAN LOGICAL UNIT TABLE (NTAB$)

0

2

3

4

5

6

7
i

8

9

lO

II

12

13

14

15

16

17

18

19

20

21
i

22

23

24

25

26

27

28

29

30

SYSTEM

DEVICE

CONSOLE

UNIT 'A'

. I B '

II IC|

II I D'

CARD READER

LINE PRINTER

UNIT 'E'

" 'F'

" 'G'

II 'H'

II Ill

. ,j i

i

ii IKI

II i L'

II I M'

II |N |

FILM PLOTTER

UNIT '0'
i

II ipl

n IQ i

ii IRI

II ISl

II lT ,

II IUI

II I V I

II I W I

II IXl

II Iyl

II IZl

REREAD UNIT
i

<_
z

I

,k

../r

W

Ik

'.k

,/r

W

D-5



REFERENCES

I. Gaski, J. D., Fink, L. C., Ishimoto, T., Systems Improved Numerical

Differencin 9 Analyzer Users Manual, TRW Systems, II027-6003-R0-00,
September, 1970,

2. Dusinberre, G. M., Heat Transfer Calculations by Finite Differences,
International Textbook Co., Scranton, Pa., 1961.

3. Dusinberre, G. M., Numerical Analysis of Heat Flow, McGraw-Hill, 1949.

4. Kreith, F., PrinciDles of Heat Transfer, International Textbook Co.,
Scranton, Pa_, lgb_.

5. Ishimoto, T., Fink, L. C., Systems Improved Numerical Differencing

Analyzer Engineering Program Manual, TRW Systems, 14690-HOO2-RO-O0,
April, 1971.

6. FORTRAN V Programmer's Reference Manual, UNIVAC, UP-4060-Rev. l, 1969.

7. Harris, L. D., FORTRAN Programming, Merrill, 1964.

8. McCracken, D. D., Guide to FORTRAN IV Programming, Wiley, 1965.

g. Gaski, J. D., Lewis, D. R., Chrysler Improved Numerical Differencing
Analyzer, Chrysler Corp., TN---AP-66-15, April 30, 1965.

R-I



?

Actual/Re 1ati ve, 3-16

example of, 3-34f

node numbers, 3-30

Appl t cations,

gui del i nes, 3-82f

program, I-6

Application subroutines, 4-27

Arguments,

F-type statements, in, 3-99f

SINDA statements, in, 3-94

variable number of, 4-23

Arithmetic,

mode, conflict of, 3-I00

nodes, 3-30

subroutines, 4-25

type, conflict of, 3-I04

ARLXCA, 4-29, 4-33f

ARLXCC, 4-29

Array data,

block format, 3-20f

concepts, 3-22f

limits, 3-21

references to, 3-22f

Array,

elements, 3-20

negative, 3-20

structures, 3-25f

ATMPCA, 4-34

Auxi IIiary data deck, 4-42f

BACKUP, 4-34f

use of, 3-88

BALENG, 4-35

INDEX

I-l



BCDcode, 3-10

example of, 3-21

Binary data, 2-6f

Bivarlate array, 3-26f

Blanks, leading & trailing, 3-9

Block header card, 3-8

Boundary nodes, 3-30

Calling sequence, 4-19

Capacitance, l-3, 3-30

variable, 3-37f

Card columns, 2-2

Changing data, 4-18

Comma, use of, 3-9

Comments, 3-99, 3-92

COM_N block names, 4-40

Computer,

data, 2-6f

logic, 3-12

Conductance, l-3

calculation of, 3-_4f

Conductor, l-3

Conductor data,

automated options, 3-62f

BIV option, 3-72f

block format, 3-56

CAL option, 3-59f

concepts, 3-54f

DIM option, 3-70f

DIV option, 3-68f

DPM option, 3-70f

DPV option, 3-68f

GEN option, 3-60f

limits, 3-56f

options, summary of, 3-57

parameter runs input option, 4-18

SIM option, 3-67f

I-2

0

©



Conductor data,

SPM option, 3.-67f

SIV optton, 3-64f

SPV option, 3-64f

standard option, 3-58f

Conductor, one-way, 3-56

Constants, control, usage of, 4-28f

Constants data,

block format, 3-17

concepts, 3-11 f

GEN opti on, 3-I 9

input limits, 3-17

reference to, 3-17

standard option, 3-18

CONTINUE statement, 4-4

Control cards, edit, 4-7

Control constants, 3-14f

requi red, 4-33

usage of, 4-28f

Correction cards, edi t, 4-7

CSGFAC, 4-35

i-

DAMPA, 4-36

DAMPD, 4-36

Damping control, 4-36

Data,

auxi Iliary, 4-42f

changes, 4-I 8

status of, 3-88, 3-83f

Data blocks, 3-I

basic concepts, 3-8f

Data card,

conventions, 3-9

example of, 3-I0

[)ata value, 2-5

array reference, 3-25

reference form, 4-22



Data values _s arguments, use of, 3-97

Deck, input, 3-5

Deletion, syn_oltc, 4-8

Diffusion nodes, 3-2gf

DO 1.oops, 4-5

Doublet array, 3-26

DRLXCA, 4-36, 4-29

DRLXCC, 4-29

DTIMEH, 4-37

DTIMEI, 4-37

DTIMEL, 4-37

DTMPCA, 4-38

Dynamic storage, 4-lf, 4-23

0

Edit options, 4-6f

Elements of an array, 3-20

End of Data Card, 3-5

End time, 4-39

Error correction package, 4-42

EXECUTION block, 3-82f, 3-76

example of, 3-77

Execution subroutines, 4-24f

Expl icit routines, 4-25

V

Field, 2-2

Fields on data cards, 3-8f

-File conventions, 2-4

Final Parameters, 4-17f

Fixed point, 2-5

Floating point, 2-5

Floating point data, 3-9

Flowchart of CNFRWD, 3-81

Flow control,

FORTRAN, 4-4f

of program, 3-80

Flow of program, 3-76

Format, variable, 4-41f

"W.w J

I-4



FORTP_N,

flow control, 4-4f

F-type statements, 3-98f

M-type statements, 3-i02f

statements, F&M type, 3-74

subroutine name vs operations block name, 3-73

F-type FORTRAN statements, 3-98f, 3-74

Gothic type, use of, 2-2f

GO TO statements, 4-4f

Heat rates, 3-85

Hollerith, 2-5f

data, 3-9

( • t

\,

Identifier, 2-6

Identifiers, 3-23, 3-95, 3-12f

IF statements, 4-5

Implicit routines, 4-25

Initial parameters, 4-17f

Input control card, 3-4, 4-15f, 4-6

Input deck, 3-5

concepts, 3-If

structure, 3-4f

Input format, variable, 4-41f

Insertion, syn_olic, 4-8

Integer, 2-5

count, 4-22, 3-96f, 3-22

data, 3-9

Interpolation subroutines, 4-26

Italic type, use of, 2-2f

Iteration control, 4-38

LAXFAC, 4-38

Library conventions, 4-19f

Linear conductor, 3-54

I-5



"

Line Number, Edit, 4-7

Literal, 2-5

Literals, use of, 3-97f

Load & Go subroutines, 4-_f

Logical expressions, 4-5

Mathematical sol uti on subroutines, 4-26

Matrix,

format, 3-29

subroutines, 4-27

Mode, co_iflict of arithmetic, 3-I00

Modes of data, 2-6

M-type FORTRAN statements, 3-I02f, 3-74

Multiple-run capabilities, 4-5f

Multiplying factor, 3-38, 3-86

Network solution routines, 4-24f

NLOOP, 4-38, 4-29

Node, I-3

Node data,

automated options, 3-27

BIV option, 3-45

block format, 3-32

CAL o)tion, 3-35

conce)ts, 3-29f

DIM o)ti on, 3-43

OlV o)tion, 3-42

DPM o)tion, 3-43

DPV o)tion, 3-42

GEN o)tion, 3-36

options, summary of, 3-33

references to, 3-32

SIM option, 3-41

SIV option, 3-39

SPM option, 3-41

$PV option, 3-39

standard option, 3-34f

I-6

• .k . :

0

©



Node data,

tables, 3-31f

tables, example of, 3-35

Node number conventions/limits, 3-32f

Node numbers, 3-30t'

Numeric characters, 3-9

#

OPEITR, 4-39

Operating system, 1-7

Operations blocks, 3-2, 3-73f

block structure, 3-90, 3-73

FORTRAN subroutine names, vs, 3-73

functional description of, 3-75f

operational details of, 3-90f

Operators, relational, 4-5

OUTPUT, 4-39

OUTPUT CALLS block, 3-89"f

Output subroutines, 4-27

Packing, symbolic, 4-8

Parameter runs, 4-16f

Problem speci ficati on card, 3-6

Pseudo-compute sequence, 3-I

Punched cards, 2-1f

Punching, input deck, 4-9

Radi ati on,

conductor, 3-54

linearization of, 3-55

Real, 2-5

Recall option, 4-14f

Reference form, 2-6

References, relative, 3-99f

Relative ordering of data, 3-96, 3-I07

Relative references, 3-ggf

Relaxation criteria, 4-29

REM code, 3-11

H°

I-7



/

Routine, 2-5

i

i
I
i
l

/
(

...... ..j

Sample problem, l-2f

Sensi tivity program, 4--.42

Simple Variable, 3-ilf

SINDA statements, 3-74, 3-91f

Singlet array, 3-2S

Size parameters, problem, 3-I02, 4-41

Source data,

block format, 3-46

concepts, 3-45f

DIT option, 3-51

DTV option, 3-52

GEN option, 3-48

in VARIABLES l, 3-86f

options, summary of, 3-47

SIT. option, 3-50

SIV option, 3-49

standard option, 3-47

Sources, 3-33

Source, variable, 3-48f

SPACE option, 3-21f

Start time, 4-39

Statement types, 3-74

Store option, 4-14f

Subroutines, 2-5

•application, 4-27

arithmetic, 4-25

execution, 4-24f

interpolation, 4-26

load &'go, 4-40f

mathematical solution, 4-26

matri x, 4-27

network solution, 4-24f

output, 4-27

,!

'Lt

k _,L_j _

i

I-8



Symbolic _dJtlng of input deck, 4-6f

System st_Jcture, l-6f

T_.pe conventi ons, 2-4

Temperature,

chan_e criteria, 4-29

units of, 3-3

T!HEND, 4-39

TIMEO, 4-39 '_

Time,

output, 4-39

start, 4-39

.Time step, 3-85

im_lici t, 4-37

maximum, 4-37

mini.T,um, 4-37

.rltle,

block, $-6f

cards, 3-7

Trivariate array, 3-28

Type,

ari_hmeti c, confl ict of, 3-I O0

styles, 2-2f

User constants, 3-16f

Variable, 2-6

VARIABLES 1 block, 3-85

VARIABLES I, sources in, 3-33, 3-46

VARIABLE_ 2 block, 3-87f "


